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Effects of non-thermal atmospheric plasma treatment on dentin wetting and surface free energy 

for application of universal adhesives 

 

Abstract 

Objectives: To evaluate the effects of non-thermal atmospheric plasma (NTAP) treatments on dentin 

wetting and surface free energy (SFE) and compare the effects of NTAP treatment, etch-and-rinse 

and self-etch protocols for application of universal adhesives. 

Materials and methods: Mid-coronal dentin of intact third molars was used to measure contact 

angles of distilled water, ethylene-glycol and diiodomethane and calculate SFE following different 

NTAP preset treatments (feeding gas consisting of pure He, He+1%O2, He+1.5%O2), power input (1W 

or 3W) and tip-to-surface distance (2, 4 or 8mm). Contact angles of reference liquids and SFE of 

dentin following He+1.5%O2 at 3W and 4mm treatment was compared to phosphoric acid etching. 

Contact angles of Single Bond Universal (SBU; 3M ESPE) and Clearfil Universal Bond (CUB; Kuraray 

Noritake) were measured following NTAP, etch-and-rinse and self-etch protocols. 

Results: NTAP significantly reduced contact angles of reference liquids and increased dentin SFE 

compared to untreated dentin (p<0.05). O2 intensified the effect of He NTAP (p<0.05). NTAP and 

phosphoric acid increased dentin polarity and Lewis base surface characteristics. Phosphoric acid 

increased contact angles of adhesives compared to the self-etch protocol (p<0.05). NTAP resulted in 

lower adhesive contact angles than phosphoric acid, the difference being statistically significant for 

CUB (p<0.05). Compared to the self-etch protocol, NTAP slightly reduced CUB contact angle but not 

that of SBU (p>0.05). 

Conclusions: He NTAP with and without O2 increased dentin wetting and SFE, surpassing the effect of 

phosphoric acid and lowering adhesive contact angles. NTAP produced no apparent micro-

morphological changes on dentin surface comparable to acid etching. 

Clinical significance: NTAP treatment of dentin prior to adhesive application increases dentin wetting 

and surface free energy facilitating better adhesive distribution on dentin surface compared to 

phosphoric acid etching and similar to the ‘self-etch’ application protocol.  

 

Keywords: contact angle, dentin, non-thermal atmospheric plasma, surface free energy, universal 

adhesive, wetting 
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1. Introduction 

Current concepts of dentin adhesion include ‘etch-and-rinse’ (ER) or ‘self-etch’ (SE) approaches. An ER 

approach consists of etching dentin with 32-37% phosphoric acid to remove the smear layer, 

demineralize superficial dentin, expose the ultrafine collagen mesh and open dentinal tubules for 

subsequent adhesive penetration [1]. An SE approach excludes phosphoric acid step and instead relies 

on acidic monomers in dental adhesive formulation to partially demineralize dentin surface [2].  

Universal adhesives, a recently marketed group of dental adhesives, are recommended for adhesion 

to dental tissues following either approach as well as to materials for indirect restorations without 

separate priming, hence the term ‘universal’. Despite reports favoring the SE approach [3, 4], the 

manufacturers’ recommendations leave it up to the practicing dentist to choose a preferable 

application strategy for universal adhesives suggesting that both ER and SE are likely used in current 

dental practice.  

Surface modification by phosphoric acid etching has long been the preferred method of choice for 

optimizing dentin adhesion, though more complex than that on enamel. The effects of phosphoric acid 

on dentin are well known from the micro-morphological point of view [1]. However, the reported 

effects of acid etching on physico-chemical surface characteristics of dentin are contradictory. Attal et 

al. [5] concluded that acid etching results in a hydrophobic dentin surface while other authors reported 

increased hydrophilicity of dentin surface [6, 7].  

Non-thermal atmospheric plasma (NTAP) is another powerful surface modification tool recently 

gaining momentum in adhesive dentistry research. NTAP is widely used in material engineering, 

production of semiconductor devices, integrated circuits, solar cells, etc. [8-11]. In case of biomedical 

applications NTAP may be used for treatment of heat-sensitive samples that cannot withstand vacuum. 

Also, NTAP or plasma liquid interactions is becoming great interdisciplinary area of research [12]. 

NTAPs are known for high amounts of reactive oxygen and nitrogen species (RONS) responsible for 

plasma interactions with biological samples [13-15]. In this paper, as an NTAP source we used a plasma 

needle constructed and developed in Laboratory for gaseous electronics, Institute of Physics Belgrade, 

Serbia. The plasma needle was previously used to enable an osteogenic differentiation of human 

periodontal ligament mesenchymal stem cells  (hPDL-MSCs) that can help in cell-based treatment of 

periodontal defects [16], decontamination of bacteria in planktonic samples and biofilms [17-19] and 

the damage effect of plasma treatment was compared to the effects of ionizing radiation through 

induced DNA damage [20]. 
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Literature review on NTAP in adhesive dentistry shows that NTAP was previously used to modify 

surfaces of dental tissues and restorative materials, induce resin polymerization and facilitate resin 

penetration and grafting onto collagen [21]. More specifically, NTAP was shown to substantially 

decrease water contact angles on dentin [22-24] with atomic compositional changes in the form of 

decreased percentage of C and N and increased O, Ca and P [22]. Similar effects of NTAP on water 

contact angles were observed on enamel [22, 25], composites [22] and ceramics [26-28], suggesting 

increased hydrophilicity of all these substrates. Argon NTAP increased surface free energy and 

wettability of root dentin following sodium hypochlorite irrigation [29]. A recent paper [30] found no 

significant changes in dentin-surface topography after NTAP treatment for clinically relevant times. 

However, more numerous resin tags and a thinner dentin hybrid layer were visible after NTAP 

treatment. Enzymatic activity of matrix metalloproteinases was dependent on the NTAP treatment 

time [30]. Previous studies offered inconsistent evidence on the effects of NTAP on adhesive bond 

strength to dentin warranting further research [23, 24, 30-34]. An insight into previous studies reveals 

a non-standardized approach to the use of NTAP with differences regarding carrier gas, power, time 

and distance between the plasma source and the treated substrate.  

Wetting (wettability) indicates the ability of an adhesive to spread over dentin as a result of the 

balancing adhesive and cohesive forces. It further contributes to adhesive penetration into collagen 

interfibrillary spaces and dentinal tubules by capillary forces, thereby improving dentin hybridization 

as the primary mechanism of adhesion [5]. In dental research, wetting characteristics of a substrate 

(e.g. dentin) are commonly determined by measuring contact angles of water. Conclusions on 

adhesive-dentin interaction based only on water contact angles may underestimate the effects of a 

complex adhesive mixture of polar and apolar, hydrophilic and hydrophobic components. Taking into 

account polar and apolar interactions between the liquid and solid, surface free energy (SFE) allows 

better understanding of the nature of surface interactions between adhesives and dentin.  

The aims of this study were to: (1) compare the effects of a range of NTAP treatments on wetting and 

SFE of dentin and (2) compare a selected, most efficient NTAP treatment with ER and SE application 

protocols for universal adhesives in terms of wetting and SFE of dentin. The following working 

hypotheses were tested: (1) reduced distance, increased power and O2 feed in NTAP reduce the 

contact angles of reference liquids and increase SFE of dentin and (2) compared to ER and SE 

application protocols, an NTAP treatment results in lower contact angles of reference liquids and 

universal adhesives and higher SFE of dentin.  
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2. Materials and methods 

2.1 Sample preparation 

A total of 278 human, intact, third molars extracted for orthodontic reasons were used in this study. 

Ethics Committee of the University of Belgrade, School of Dental Medicine approved (Approval No. 

36/16) of the use of such teeth in research purposes and teeth were collected with patients’ consent. 

Following extraction, the teeth were cleaned of debris, stored in 0.2% thymol in a refrigerator at +4°C 

and used within 3 months of extraction.  

Each tooth was embedded in super-hard gypsum up to the enamel-cementum junction. The cusps 

were cut off using a slow-speed diamond saw (Isomet 4000, Buehler, Lake Bluff, IL, USA) to expose flat 

dentin mid-coronally. A second cut was made 1 mm below the exposed dentin surface, producing a 1 

mm thick dentin disk, one from each crown/tooth. Dentin disks were wet-polished manually with a 

600-grit SiC abrasive paper for 30 s to produce a smear layer. 

All dentin disks were allocated to groups and subgroups according to the subsequent treatment and 

reference liquids used for contact angle measurement, as shown in Table 1. Based on the results for 

100% He NTAP, 8 mm tip-to-surface distance was not tested with NTAP with O2 feed to reduce the 

overall number of groups. Additional disks were prepared for SEM analysis.  

2.2 Non-thermal atmospheric plasma (NTAP) treatment 

An NTAP source used in this work was the so-called plasma needle [35] which generated non-thermal 

plasma at 13.56 MHz frequency (Figure 1). The powered electrode of plasma needle was wolfram wire 

(outer diameter (o.d.) 0.5 mm) enclosed in a ceramic tube. Both were placed within a glass tube with 

an inner diameter of 4 mm (outer diameter (o.d.) 6 mm). The glass tube was held in Teflon support. In 

all experiments, we used helium or a mixture of helium and oxygen as the carrier gas and gas flow was 

kept constant at 1 slm (standard liter per minute). We used pure He, 99% He+1% O2 or 98.5% He+1.5% 

O2 mixtures. The distances between the treated dentin surface and the tip of the plasma needle were 

2, 4 or 8 mm. The applied powers of plasma needle in this experiment were 1 W or 3 W. NTAP 

treatment time was 30 s in all groups. In order to determine the power delivered to the plasma we 

used derivative probes developed at the Laboratory for gaseous electronics, Institute of Physics 

Belgrade, Serbia [36].  
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2.3 Acid etching and adhesive application 

To simulate the ER adhesive application protocol, the upper surface of each dentin disk was etched 

with 32% phosphoric acid (Scotchbond Universal Etchant, 3M ESPE, St. Paul, MN, USA) for 15 s, rinsed 

under tap water for 15 s and blot-dried using a cotton pellet (Agava, Prokuplje, Serbia).  

To simulate the SE application protocol, dentin disks with the smear layer were blot-dried and used 

without any additional treatment. Table 2 provides details on the materials used in this study.  

2.4 Contact angle measurements and surface free energy calculation 

The sessile drop technique was used to measure contact angles of three reference liquids: distilled 

water, ethylene glycol (Sigma-Aldrich, St. Louis, MO, USA) and diiodomethane (Acros Organics, 

Fairlawn, NJ, USA). Following the ER and SE protocols, universal adhesives SBU and CUB were also used 

for contact angle measurements.  

The experiment was so designed that NTAP treatment or acid etching and contact angle measurement 

were performed under the same temperature (23.3±0.3°C) and humidity (34.1physi%±1.5%) 

conditions. Immediately after NTAP or acid etching treatment, the samples were transferred onto the 

contact angle measurement bench, so they remained still partially wet. A pre-set amount of liquid (2µl) 

was dispensed from a micropipette (BIOHIT, BiohitOyj, Helsinki, Finland) onto dentin surface at a 90° 

angle and 4 mm distance. The contact angles (θ) of reference liquids and universal adhesives were 

recorded using a contact angle analyzer 1s after the drop touched dentin surface and measured using 

Image J software (Version 1.42, National Institute of Health, USA). Contact angle analyzer was 

constructed at the Institute of Physics to allow the above mentioned standard conditions (Figure 2). 

The setup included a DSLR Nikon D7100 camera with mounted Nikkor Macro lens 105 mm f2.8 D, Nikon 

SB910 flashlight and position stand. Camera in relation to the sample was adjusted using a tripod with 

built-in libel so it was always in the horizontal plane with the sample holder.  

SFE (γ) calculation was based on van Oss-Chaudhury-Good thermodynamic approach for solids and the 

three-liquid phase method. According to this theory, both apolar and polar interactions occur at the 

interface between liquid and solid materials [37]. Apolar interactions occurring between two 

completely apolar compounds are known as Lifshitz-van der Waals interactions. A component of SFE 

of compound i based on strictly apolar interactions is expressed as Lifshitz-van der Waals component 

or 𝛾𝑖
𝐿𝑊. Polar interactions are largely based on hydrogen-bonding or electron acceptor-electron donor 

(Lewis acid-base) interactions between polar moieties. These Lewis acid-base interactions are 

asymmetrical, so electron acceptor and electron donor parameters of the polar component of SFE of 

compound i are expressed as 𝛾𝑖
+ and 𝛾𝑖

− [37]. SFE of a solid (𝛾𝑆) and its components (apolar  𝛾𝑆
𝐿𝑊, Lewis 
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acid 𝛾𝑆
+and Lewis base 𝛾𝑆

−) are calculated using the contact angles (θ) of three reference liquids with 

their known SFE parameters (𝛾𝐿
𝐿𝑊, 𝛾𝐿

+ and  𝛾𝐿
−) according to the following formula: 

(1 + 𝑐𝑜𝑠𝜃)𝛾𝐿 = 2(√𝛾𝑆
𝐿𝑊𝛾𝐿

𝐿𝑊 + √𝛾𝑆
+𝛾𝐿

− + √𝛾𝑆
−𝛾𝐿

+) 

where the SFE of liquid equals the sum of SFE components (apolar Lifshitz-van der Waals and polar 

acid-base) according to the rule of additivity: 

𝛾𝐿 =  𝛾𝐿
𝐿𝑊 + 𝛾𝐿

𝐴𝐵 

with 𝛾𝐿
𝐴𝐵 = 2√𝛾𝐿

+𝛾𝐿
− 

By solving the van Oss-Chaudhury-Good equation three times for three reference liquids, it is possible 

to differentiate between polar and apolar surface interactions and between Lewis acid and Lewis base 

polar interactions of a tested solid. Though reference liquids may vary, two of them must be polar [37]. 

In the present study, water and ethylene glycol were used as polar and diiodomethane as apolar liquid 

with known SFE parameters [38, 39]. 

2.5 Scanning Electron Microscopy (SEM)  

Representative samples from NTAP, acid etched and control groups (8 teeth in total) were subjected 

to SEM to analyze the differences in surface micro-morphology. Without prior dehydration treatment, 

the samples were mounted on aluminum stubs, fixed with graphite conductive tape, subjected to 

vacuum in a sputter coater (POLARON SC502, Fisions Instruments, Ipswich, UK) and then coated with 

a thin film of Au alloy. The samples were analyzed using TESCAN FE-SEM (Mira 3 XMU, TESCAN a.s., 

Brno, the Czech Republic) operating at 10 keV.  

2.6 Statistical analysis 

All data were statistically analyzed in Minitab 16 software package (Minitab Inc., State College, PA, 

USA) with the level of significance set at 0.05. To test the differences in contact angles for each 

reference liquid, general linear model (GLM) was applied for factors ‘plasma’, ‘power’ and ‘distance’ 

as well as their interactions. To test the differences in dentin SFE, GLM was applied using the same 

factors. Where the interaction was significant, further one-way analysis of variance (ANOVA) with 

Tukey’s post-hoc test and Bonferroni correction was used. Differences in contact angles and SFE 

between the selected NTAP treatment, ER and SE protocols were tested using one way ANOVA with 

Tukey’s post-hoc test. Equal variances were tested using Bartlett’s and Levene’s tests and where 
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necessary data transformation was applied to stabilize the differences in variances. Quadratic, 

logarithmic or sqrt functions were used for data transformation. 

3. Results 

3.1 Screening of NTAP treatment regimes 

Figures 3 present the box-an-whisker plots of contact angles of reference liquids following an array of 

NTAP treatments. GLM analyses showed that all NTAP treatments significantly reduced the contact 

angles of all three reference liquids compared to the untreated control group (p<0.001). The results 

were most prominent for water with contact angles decreasing from 84.2°±2.6° in the control group 

to the range of 6-30° in the NTAP-treated group with the exception of 100% He_1W_8mm group 

(where the post-treatment contact angle was 69.1°±5.6°). Though contact angles for ethylene-glycol 

and diiodomethane were similar in the control group (36.6°±5.3° and 37.9°±1.9°, respectively), NTAP 

treatment decreased the ethylene glycol contact angle (5-12° range) to a greater extent than that of 

diiodomethane (10-30 range). 

GLM analyses for factors ‘plasma’, ‘power’ and ‘distance’ showed that O2 feed further decreased 

contact angles of water compared to pure He NTAP (p<0.001). There was no difference between 1% 

and 1.5% O2 in the resulting contact angles of water. Such effects of NTAP with O2 feed were not 

observed with ethylene-glycol and diiodomethane (p=0.183 and p=0.094, respectively).  

NTAP power of 3 W significantly reduced contact angles of water and diiodomethane as compared to 

1 W power (p<0.001) but this effect was not found for ethylene glycol (p=0.008). Tip-to-surface 

distances of 2 and 4 mm did not produce any significant differences in contact angles of reference 

liquids (water p=0.068; ethylene glycol p=0.109 and diiodomethane p=0.454). For 8 mm distance, 100% 

He NTAP at 1 W resulted in significantly higher water contact angles than other groups (p<0.001). 

Therefore, we excluded 8 mm tip-to-surface distance from the NTAP treatments with O2 feed. Within 

group differences were detected using one-way ANOVAs statistical test and are marked with letters 

and symbols in Figures 3. 

Regarding SFE, significantly higher SFE of NTAP-treated dentin was found than that of the untreated 

group (Figure 4). Moreover, NTAP with O2 feed further increased the SFE of dentin compared to 100% 

He NTAP (p<0.001). No differences were found between NTAPs with 1% and 1.5% O2 (p=0.357).  

For the same NTAP source, higher SFE of dentin was associated higher power for pure He and He+1%O2 

NTAPs i.e. 3 W resulting in higher SFE than 1 W treatment (p<0.001). Conversely, different powers of 
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NTAP with 1.5% O2 feed had no effect on the SFE of dentin (p=0.09), except for 1W_4mm group which 

resulted in slightly lower SFE of dentin compared to 3W_4mm (p=0.013). 

In general, the tip-to-surface distance did not affect the SFE of NTAP-treated dentin (p=0.514), with 

exceptions being 100% He_1W_8mm and He+1.5%O2_1W_4mm, which showed significantly lower SFE 

than their corresponding groups (p<0.001 and p=0.007, respectively) (Figure 4). 

Component analysis of SFE is presented in Figure 5. In the control group (untreated dentin), apolar 

component of SFE appeared more prominent than the polar component, of which Lewis acid was 

predominant. NTAP treatments, except for the less effective 1W_8mm of pure He NTAP, all showed 

rather similar effects i.e. polar component substantially increased compared to the control, and apolar 

component also slightly increased. Within the polar component of SFE in NTAP-treated dentin, Lewis 

base surpassed Lewis acid component. Compared to the control untreated dentin, Lewis base and 

apolar components increased whereas Lewis acid component decreased. 

3.2 Comparison of NTAP with ER and SE protocols for universal adhesives 

Based on the previous screening, the following NTAP treatment was chosen for the next part of the 

study: He+1.5%O2_3W_4mm. Contact angle measurements for three reference liquids and the 

subsequent SFE calculation were performed for NTAP-treated, acid-treated and untreated dentin. 

Universal adhesives SBU and CUB were used only to measure their contact angles on NTAP-treated, 

acid-treated and untreated dentin. It was not possible to calculate the SFE of dentin using adhesives 

as SFE may only be calculated using reference liquids (water, ethylene glycol and diiodomethane).  

Contact angles of all reference liquids were lower on NTAP-treated than on acid-treated or untreated 

dentin (p<0.001) (Figure 6). Phosphoric acid etching produced significantly lower water contact angles 

compared to the untreated, control group (p<0.001) but the same effect was not found for ethylene-

glycol and diiodomethane (p=0.069 and p=0.120, respectively).  

As for universal adhesives, higher contact angles of SBU and CUB (44.13±8.45 and 33.04±6.04, 

respectively) were found on acid-treated than untreated dentin (29.94±1.86 and 26.56±2.33, 

respectively) (SBU p=0.003 and CUB p=0.009, respectively). Slightly lower contact angles of SBU and 

CUB were measured on NTAP-treated dentin (35.68±2.35 and 19.96±6.89, respectively) compared 

to acid-etched dentin, but the differences reached statistical significance only for CUB (p=0.015). NTAP-

treated and untreated dentin showed no significant differences in contact angles of universal 

adhesives (p=0.808). 
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The SFE of dentin was highest on NTAP-treated and lowest on untreated dentin. (Figure 7). NTAP and 

acid etching increased polar, Lewis base and decreased Lewis acid component as compared to the 

untreated dentin. NTAP increased and acid etching decreased apolar component of SFE compared to 

that of untreated dentin. 

3.3 SEM micro-morphological analysis 

Representative SEM micrographs are presented in Figure 8. Phosphoric acid etching removed the 

smear layer, exposed the collagen mesh and opened dentinal tubules. No visible micro-morphological 

differences were found between NTAP-treated and untreated dentin (control group) which was only 

ground with 600-grit SiC abrasive paper to produce the smear layer.  

4. Discussion 

The first working hypothesis was upheld i.e. all NTAP regimes reduced contact angles of reference 

liquids and increased SFE of dentin compared to the untreated dentin with further detectable 

differences relative to the tip-to-surface distance, power and O2 feed.  

He and Ar are commonly used carrier gases in NTAP studies on dental tissues with powers generally 

higher (5-10 W) than in the present study (1 W and 3 W). A comparable power of 2-3 W was used in 

the study by Zhang et al. [40] who used Ar-based NTAP to study adhesive penetration into 

demineralized dentin. Our intention was to optimize He-based NTAP regimes with lower powers for 

use on dentin in order to minimize the effect of heating and potential dentin cracks observable with 

higher powered NTAPs. Furthermore, the chosen time and tip-to-surface distances are clinically 

relevant and manageable. Up to 10% O2 feed was added to NTAPs used for microbial disinfection [41] 

whereas lower, up to 1%, O2 was added to NTAP for dentin and root canal treatment [42]. We used 1% 

and 1.5% O2 feed to investigate if slightly higher O2 feed would intensify the effect of NTAP. The results 

indicated that whilst O2 generally intensified the effects of NTAP on wetting and SFE of dentin, there 

was little or no difference between 1% and 1.5% O2 suggesting that there may be a ‘saturation’ effect 

of O2 feed in NTAP. In the study of Koban et al. [42] significant differences in water contact angles were 

found between Ar NTAP with 0.2% and 1% O2. These findings indicate that O2 feed as low as 0.2% may 

be disregarded and pure carrier gas used for plasma treatment. If O2 is to be added to NTAP, the 

present results suggest that 1-1.5% O2 may be recommended. 

All NTAP regimes significantly reduced the contact angles of reference liquids, especially water, and 

increased SFE of dentin compared to the untreated dentin, indicating a dramatic increase in dentin 

wetting. The finding of lower contact angles of reference liquids was expected and is in accord with 

previous studies [22-25]. Moreover, the same effects were achieved in the present study with lower 
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powered NTAPs (1 W) at clinically relevant distances that allow focusing the NTAP needle on small 

cavities, e.g. ‘slot’, Class III and V and minimally invasive Class I cavities.  

A significant decrease in water contact angle was coupled with a greater decrease in the contact angle 

of ethylene glycol than diiodomethane. NTAP induced a greater change with polar substances (water 

and ethylene glycol) than apolar diiodomethane suggesting that a major change on dentin surface was 

related to hydrophilic and polar interactions. This finding was corroborated by the SFE component 

analysis, in which polar component increased substantially following the NTAP treatment. A change in 

acid-base interaction was also detected following the NTAP treatment with an increase in Lewis base 

component. This further suggests that more negatively charged sites appear on the surface of the 

NTAP-treated dentin for potential interactions with electron accepting molecules, such as acidic 

monomers from adhesives.  

Our SFE component analyses is in accordance with previous spectroscopic (XPS and FTIR) studies which 

reported grafting polar, oxygen-containing moieties on NTAP-treated surfaces as a result of an intense 

attack of reactive oxygen species. Namely, Chen et al. [22] found an increased percentage of O in 

dentin and enamel, Ritts et al. [32] found increased carbonyl C=O groups on collagen and Lehmann et 

al. [25] reported on increased carboxylate CO2- and carbonate CO3
2- ions on the surface of enamel. 

Beside negatively charged ions with clear affinity for reaction with Lewis acids (electron acceptors), 

C=O group also contributes to surface reactivity. C=O group is moderately polar, considering the 

differences in electronegativities of C and O, with affinity for interactions between O and Lewis 

acids/electron acceptors (e.g. H+) or C and Lewis bases/electron donors (e.g. NH3 or OH-). The present 

results suggest that O2 feed in NTAP further increases polar, specifically Lewis base, interaction sites 

compared to pure He NTAP. Higher powered NTAPs further intensified this effect of O2 feed.  

Based on the screening of an array of NTAP treatments, we chose He+1.5%O2 NTAP at 3 W power and 

4 mm tip-to-surface distance as the NTAP treatment in the second part of the study. Here we compared 

the effects of the said NTAP treatment with phosphoric acid etching representing the ER protocol and 

no treatment representing the SE protocol of adhesive application. Two universal adhesives were 

chosen, SBU and CUB. According to manufacturers’ technical data sheets, both SBU and CUB are 

ethanol- and water-based adhesives, containing BisGMA, HEMA and 10-MDP monomers. CUB is 

claimed to contain a highly hydrophilic acidic amide monomer for improved wetting and adhesive 

penetration, yet the manufacturer did not disclose its name and chemical structure. 

The second working hypothesis was partially upheld as NTAP induced greater SFE of dentin and lower 

contact angles of reference liquids compared to phosphoric acid etching (ER protocol) but had a limited 

effect on universal adhesives in relation to the SE application protocol. 
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The results showed that both NTAP and phosphoric acid significantly increase wetting of the treated 

dentin surface, this effect being more pronounced with NTAP. Whilst NTAP significantly reduced the 

contact angles of all three reference liquids, phosphoric acid did so only with water whereas ethylene 

glycol and diiodomethane contact angles were not significantly different from those on untreated 

dentin. Increased wetting of dentin surface following phosphoric acid etching is in accordance with 

previous studies [6, 7]. Furthermore, our SFE component analysis revealed that untreated dentin 

exhibited both apolar and polar sites with predominant Lewis acid electrostatic component. As is 

customary in dental studies, the ‘untreated’ dentin refers to mid-coronal dentin cut with a diamond 

saw and ground with 600-grit SiC abrasive paper to produce a smear layer of various thicknesses. Thus, 

surface characteristics relate to the smear layer which is essentially an amorphous layer of inorganic-

organic debris containing hydroxyapatite, collagen and microbial remnants [43]. Electrostatic Lewis 

acidity of the dentin smear layer is likely associated with the abundance of Ca2+ ions from 

hydroxyapatite and contributes to the interaction of phosphate or carboxylate ions with the smear 

layer and dentin itself during acid etching with phosphoric acid or acidic monomers in adhesives.  

Despite its effect on water, phosphoric acid etching significantly increased the contact angles of 

universal adhesives, SBU and CUB, compared to the untreated dentin where SBU and CUB were applied 

following the SE protocol. This finding highlights the importance of the present approach based on 

three reference liquids and SFE component analysis to elucidate the true interaction between 

adhesives and dentin. Though phosphoric acid etching increased surface hydrophilicity it did not 

contribute to wider adhesive distribution over etched dentin compared to adhesive distribution on un-

etched dentin. This could be due to the presence of hydrophobic monomers in both adhesives, namely 

BisGMA, and the subsequent phase separation between hydrophobic and hydrophilic monomers 

within the hybrid layer [44, 45]. Phosphoric acid etching decreased the apolar component of dentin 

SFE further contributing to the depleted interaction between apolar adhesive components and dentin 

surface. Though ether (R-O-R) and hydroxyl (R-OH) linkages in monomers exert some polarity, the 

majority of spacer groups in hydrophobic monomers contribute to low polarity or apolarity [46]. 

Slightly decreased apolar component of SFE could explain why the only apolar reference liquid, 

diiodomethane, exerted increased contact angle on acid etched dentin.  

Both NTAP and phosphoric acid etching resulted in an increase of electrostatic Lewis base component. 

Increased grafting of polar, oxygen-containing groups was previously discussed for NTAP treatment. 

As for acid etching, Lehmann et al. [25] detected C=O groups and CO2- and CO3
2- ions at enamel surface 

following acid etching using XPS analysis. A similar increase in polar, oxygen-containing moieties at 

dentin following acid etching could be the reason for increased Lewis base sites as found in the present 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



11 
 

study. This may favor the subsequent interaction of electron acceptors, or Lewis acids, and contribute 

to hydrogen bonding between adhesive resins and dentin substrate. 

NTAP treatment of dentin prior to adhesive application resulted in lower contact angles of SBU and 

CUB adhesives compared to those on the acid etched dentin, suggesting better adhesive distribution 

following NTAP treatment. A more favorable effect of NTAP than phosphoric acid in terms of adhesive 

distribution could be due to the increased surface reactivity of dentin as indicated by increased both 

apolar and polar (Lewis acid and Lewis base) interaction sites.  

Increased surface reactivity and hydrophilicity are likely reasons for lower contact angles of CUB 

adhesive on NTAP-treated than untreated dentin. The presence of a hydrophilic amide dimethacrylate 

monomer in CUB, in addition to hydrophilic HEMA, may have contributed to this finding. The effect of 

NTAP on adhesive contact angle appeared to be material-dependent as NTAP did not facilitate the 

distribution of SBU adhesive compared to the untreated dentin as it did with CUB. Further research is 

therefore required to elucidate the adhesive-dentin interactions following NTAP treatment.  

Though positive effects of NTAP on adhesive penetration were documented, adhesive phase 

separation was found in NTAP-treated dentin in a previous study [40]. NTAP increased the penetration 

of hydrophilic but not hydrophobic monomers within the hybrid layer, limiting the positive effects of 

NTAP. Phase separation within the hybrid layer due to increased penetration of hydrophilic monomers 

increases the risk of creating areas more susceptible to water sorption, as hydrophilicity was found to 

be the prime factor determining the extent of water sorption [47, 48]. In turn, water sorption promotes 

faster biodegradation of adhesive itself [48] as well as adhesive-dentin bond [49, 50]. This could be the 

reason for the lack of long-term effect of NTAP on adhesive bond strength despite positive effects on 

immediate bond strength [23, 24, 33, 34, 51, 52].  

The present qualitative SEM analysis revealed no micro-morphological differences between untreated 

and NTAP-treated dentin. Previous studies also reported no structural differences in the appearance 

of NTAP-treated dentin/enamel, hence no destructive effects of NTAP [22, 25, 42]. NTAP does have a 

potential not only to chemically interact with the surface but also to increase surface roughness of 

dentin by etching [21]. However, this roughening effect was not as notable as with phosphoric acid 

[25] due to the selective etching of the organic phase by NTAP and not the mineral phase, which was 

confirmed by elemental analysis [22]. Under the present experimental conditions, no etching effect of 

NTAP occurred on dentin surface. 
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 5. Conclusion 

He NTAP with and without O2 substantially increased dentin wetting and SFE, surpassing the effect of 

phosphoric acid etching. O2 intensified the effect of He NTAP at 1 W and 3 W powers and clinically 

relevant distances of 2 and 4 mm. Surface modification of dentin following NTAP treatment included 

increased hydrophilicity, polarity and electrostatic Lewis base interaction sites. Phosphoric acid etching 

did not favor adhesive distribution on dentin surface as indicated by increased contact angles of 

universal adhesives, SBU and CUB, despite decreasing water contact angle compared to the untreated 

dentin. NTAP treatment of dentin prior to adhesive application facilitated better adhesive distribution 

compared to acid etched dentin. However, NTAP did not show an improvement regarding the adhesive 

distribution on dentin compared to the SE protocol of application. Under the present conditions, the 

effects of NTAP were mainly related to surface modification, with no etching ability but also no 

structural damage on the dentin surface. 

Disclosure 

The authors declare no financial interest in any of the products used in the study. 

Compliance with ethical standards 

- Conflict of interest: Author Jovana N. Stasic declares that she has no conflict of interest. Author 

Nenad Selaković declares that he has no conflict of interest. Author Nevena Puač declares that 

she has no conflict of interest. Author Maja Miletić declares that she has no conflict of interest. 

Author Gordana Malović declares that she has no conflict of interest. Author Zoran Lj. Petrović 

declares that he has no conflict of interest. Author Djordje N. Veljovic declares that he has no 

conflict of interest. Author Vesna Miletic declares that she has no conflict of interest. 

- Funding: The work was supported by the Ministry of Education, Science and Technological 

Development, Republic of Serbia [grant numbers III41011, ON171037 and ON172007]. 

- This article does not contain any studies with human participants or animals performed by any 

of the authors. 

- Informed consent: For this type of study, formal consent is not required. 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



13 
 

References 

1.Pashley DH, Tay FR, Breschi L, Tjäderhane L, Carvalho RM, Carrilho M, Tezvergil-Mutluay A (2011) 
State of the art etch-and-rinse adhesives. Dent Mater 27:1-16. 
https://doi.org/10.1016/j.dental.2010.10.016  
2.Van Meerbeek B, Yoshihara K, Yoshida Y, Mine A, De Munck J, Van Landuyt KL (2011) State of the 
art of self-etch adhesives. Dent Mater 27:17-28.  
https://doi.org/10.1016/j.dental.2010.10.023  
3.Rosa WL, Piva E, Silva AF (2015) Bond strength of universal adhesives: A systematic review and 
meta-analysis. J Dent 43:765-776.  
https://doi.org/10.1016/j.jdent.2015.04.003 
4.Zhang ZY, Tian FC, Niu LN, Ochala K, Chen C, Fu BP, Wang XY, Pashley DH, Tay FR (2016) Defying 
ageing: An expectation for dentine bonding with universal adhesives? J Dent 45:43-52. 
https://doi.org/10.1016/j.jdent.2015.11.008 
5.Attal JP, Asmussen E, Degrange M (1994) Effects of surface treatment on the free surface energy of 
dentin. Dent Mater 10:259-264.  
http://dx.doi.org/10.1016/0109-5641(94)90071-X 
6.Rosales JI, Marshall GW, Marshall SJ, Watanabe LG, Toledano M, Cabrerizo MA, Osorio R (1999) 
Acid-etching and hydration influence on dentin roughness and wettability. J Dent Res 78:1554-1559. 
https://doi.org/10.1177/00220345990780091001 
7.Toledano M, Osorio R, Perdigao J, Rosales JI, Thompson JY, Cabrerizo-Vilchez MA (1999) Effect of 
acid etching and collagen removal on dentin wettability and roughness. J Biomed Mater Res 47:198-
203.  
https://doi.org/10.1002/(SICI)1097-4636(199911)47:2<198::AID-JBM9>3.0.CO;2-L  
8. Makabe T, Petrovic ZLj (2001) Plasma Electronic, Second Editor: Application in Microelectronic 
Device. CRC Press, Taylor and Francis Group, Boca Raton 
9. Adamovich I, Baalrud SD, Bogaerts A,  Bruggeman PJ, Cappelli M,  Colombo V, Czarnetzki U, Ebert 
U, Eden JG, Favia P, Graves DB, Hamaguchi S, Hieftje G, Hori M, Kaganovich ID,  Kortshagen U, 
Kushner MJ, Mason NJ, Mazouffre S, Mededovic Thagard S, Metelmann H-R, Mizuno A, Moreau E, 
Murphy AB, Niemira BA, Oehrlein GS, Petrovic ZLj, Pitchford LC, Pu Y-K, Rauf S, Sakai O, Samukawa S, 
Starikovskaia S, Tennyson J, Terashima K, Turner MM, Van de Sanden MCM, Vardelle A (2017) The 
2017 Plasma Roadmap: Low temperature plasma science and technology. J Phys D: Appl Phys 
50:323001.  
https://doi.org/10.1088/1361-6463/aa76f5 
10. Abe H, Yoneda M, Fujiwara N (2008) Developments of Plasma Etching Technology for Fabricating 
Semiconductor Devices. Japanese Journal of Applied Physics 47:1435–1455. 
https://doi.org/10.1143/JJAP.47.1435 
11. Chen FF (1995) Industrial applications of low‐temperature plasma Physics. Physics of Plasmas 
2:2164. 
https://doi.org/10.1063/1.871477 
12. Bruggeman PJ, Kushner MJ, Locke BR, Gardeniers JGE, Graham WG, Graves DB, Hofman-Caris 
RCHM, Maric D, Reid JP, Ceriani E, Fernandez Rivas D, Foster JE, Garrick SC, Gorbanev Y, Hamaguchi 
S, Iza F, Jablonowski H, Klimova E,  Kolb J, Krcma F, Lukes P, Machala Z, Marinov I, Mariotti D, 
Mededovic Thagard S, Minakata D,  Neyts EC, Pawlat J, Petrovic ZLj, Pflieger R, Reuter S, Schram D C , 
Schröter S, Shiraiwa M, Tarabová B, Tsai PA, Verlet JRR, Von Woedtke T, Wilson KR, Yasui K, Zvereva 
G (2016) Plasma–liquid interactions: a review and roadmap. Plasma Sources Sci Technol 25:053002. 
https://doi.org/10.1088/0963-0252/25/5/053002 
13. Stoffels E, Kieft IE, Sladek REJ , Van den Bedem L J M, Van der Laan EP, Steinbuch M (2006) 
Plasma needle for in vivo medical treatment: recent developments and perspectives. Plasma Sources 
Sci Technol 15:S169.  
https://doi.org/10.1088/0963-0252/15/4/S03 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1016/j.dental.2010.10.016
https://doi.org/10.1016/j.dental.2010.10.023
https://doi.org/10.1016/j.jdent.2015.04.003
http://dx.doi.org/10.1016/0109-5641(94)90071-X
https://doi.org/10.1177/00220345990780091001
https://doi.org/10.1088/1361-6463/aa76f5
https://doi.org/10.1143/JJAP.47.1435
https://doi.org/10.1063/1.871477
https://doi.org/10.1088/0963-0252/25/5/053002
https://doi.org/10.1088/0963-0252/15/4/S03


14 
 

14. Von Woedtke Th, Reuter S, Masur K, Weltmann KD (2013) Plasmas for medicine. Physics Reports 
530:291-320.  
https://doi.org/10.1016/j.physrep.2013.05.005 
15. Puač N, Živković S, Selaković N, Milutinović M, Boljević J, Malović G, Petrović ZLj (2014) Long and 
short term effects of plasma treatment on meristematic plant cells. Appl Phys Lett 104:214106. 
https://doi.org/10.1063/1.4880360 
16.Miletić M, Mojsilović S, Okić Đorđević I, Maletić D, Puač N, Lazović S, Malović G, Milenković P, 
Petrović ZLj, Bugarski D (2013) Effects of non-thermal atmospheric plasma on human periodontal 
ligament mesenchymal stem cells. Journal of Physics D: Applied Physics 46:345401. 
https://doi.org/10.1088/0022-3727/46/34/345401 
17.Lazović S, Puač N, Miletić M, Pavlica D,  Jovanović M, Bugarski D, Mojsilović S, Maletić D, Malović 
G, Milenković P, Petrović Z (2010) The effect of a plasma needle on bacteria in planktonic samples 
and on peripheral blood mesenchymal stem cells. New Journal of Physics 12:083037. 
https://doi.org/10.1088/1367-2630/12/8/083037 
18.Miletić M, Vuković D, Živanović I, Dakić I, Soldatović I, Maletić D, Lazović S, Malović G, Petrović ZLj, 
Puač N (2014) Inhibition of methicillin resistant Staphylococcus aureus by a plasma needle. Central 
European Journal of Physics 12:160-167.  
https://doi.org/ 10.2478/s11534-014-0437-z 
19.Puač N, Miletić M, Mojović M, Popović-Bijelić A, Vuković D, Miličić B, Maletić D, Lazović S, Malović 
G, Petrović  ZLj (2015) Sterilization of bacteria suspensions and identification of radicals deposited 
during plasma treatment. Open Chemistry 13:332–338.  
https://doi.org/10.1515/chem-2015-0041 
20.Lazović S, Maletić D, Leskovac A, Filipović J, Puač N, Malović G, Joksić G, Petrović ZLj (2014) Plasma 
induced DNA damage: Comparison with the effects of ionizing radiation. Appl Phys Lett 105:124101. 
https://doi.org/10.1063/1.4896626  
21.Liu Y, Liu Q, Yu QS, Wang Y (2016) Nonthermal Atmospheric Plasmas in Dental Restoration. J Dent 
Res 95:496-505.  
https://doi.org/10.1177/0022034516629425 
22.Chen M, Zhang Y, Sky Driver M, Caruso AN, Yu Q, Wang Y (2013) Surface modification of several 
dental substrates by non-thermal, atmospheric plasma brush. Dent Mater 29:871-880. 
https://doi.org/10.1016/j.dental.2013.05.002 
23.Han GJ, Kim JH, Chung SN, Chun BH, Kim CK, Seo DG, Son HH, Cho BH (2014) Effects of non-
thermal atmospheric pressure pulsed plasma on the adhesion and durability of resin composite to 
dentin. Eur J Oral Sci 122:417-423.  
https://doi.org/10.1111/eos.12153 
24.Hirata R, Teixeira H, Ayres AP, Machado LS, Coelho PG, Thompson VP, Giannini M (2015) Long-
term Adhesion Study of Self-etching Systems  to Plasma-treated Dentin. J Adhes Dent 17:227-233. 
https://doi.org/10.3290/j.jad.a34138 
25.Lehmann A, Rueppell A, Schindler A, Zyla IM, Seifert HJ, Nothdurft F, Hannig M, Rupf S (2013) 
Modification of enamel and dentin surfaces by non-thermal atmospheric plasma. Plasma Processes 
Polym 10:262-270.  
https://doi.org/10.1002/ppap.201200088 
26.Han GJ, Chung SN, Chun BH, Kim CK, Oh KH, Cho BH (2012) Effect of the applied power of 
atmospheric pressure plasma on the adhesion of composite resin to dental ceramic. J Adhes Dent 
14:461-469.  
https://doi.org/10.3290/j.jad.a25688 
27.Silva NR, Coelho PG, Valverde GB, Becker K, Ihrke R, Quade A, Thompson VP (2011) Surface 
characterization of Ti and Y-TZP following non-thermal plasma exposure. J Biomed Mater Res B Appl 
Biomater 99:199-206.  
https://doi.org/10.1002/jbm.b.31887 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1016/j.physrep.2013.05.005
https://doi.org/10.1063/1.4880360
https://doi.org/10.1088/0022-3727/46/34/345401
https://doi.org/10.1088/1367-2630/12/8/083037
https://doi.org/10.1515/chem-2015-0041
https://doi.org/10.1063/1.4896626
https://doi.org/10.1177/0022034516629425
https://doi.org/10.1016/j.dental.2013.05.002
https://doi.org/10.1111/eos.12153
https://doi.org/10.3290/j.jad.a34138
https://doi.org/10.1002/ppap.201200088
https://doi.org/10.3290/j.jad.a25688
https://doi.org/10.1002/jbm.b.31887


15 
 

28.Valverde GB, Coelho PG, Janal MN, Lorenzoni FC, Carvalho RM, Thompson VP, Weltemann KD, 
Silva NR (2013) Surface characterisation and bonding of Y-TZP following non-thermal plasma 
treatment. J Dent 41:51-59. 
https://doi.org/10.1016/j.jdent.2012.10.002 
29.Prado Md, Roizenblit RN, Pacheco LV, Barbosa CA, Lima CO, Simão RA (2016) Effect of Argon 
Plasma on Root Dentin after Use of 6% NaOCl. Braz Dent J 27:41-5.  
https://doi.org/10.1590/0103-6440201600486 
30. Ayres AP, Bonvent JJ, Mogilevych B, Soares LES, Martin AA, Ambrosano GM, Nascimento FD, Van 
Meerbeek B, Giannini M (2018) Effect of non-thermal atmospheric plasma on the dentin-surface 
topography and composition and on the bond strength of a universal adhesive. Eur J Oral Sci 126:53-
65.  
http://doi.org/10.1111/eos.12388 
31. Ayres APA, Pongprueksa P, De Munck J, Gré CP, Nascimento FD, Giannini M, Van Meerbeek B 
(2017) Mini-interfacial Fracture Toughness of a Multimode Adhesive Bonded to Plasma-treated 
Dentin. J Adhes Dent 19:409-416.  
https://doi.org/10.3290/j.jad.a38999 
32.Ritts AC, Li H, Yu Q, Xu C, Yao X, Hong L, Wang Y (2010) Dentin surface treatment using a non-
thermal argon plasma brush for interfacial bonding improvement in composite restoration. Eur J Oral 
Sci 118:510-516.  
https://doi.org/10.1111/j.1600-0722.2010.00761.x 
33.Dong X, Ritts AC, Staller C, Yu Q, Chen M, Wang Y (2013) Evaluation of plasma treatment effects 
on improving adhesive-dentin bonding by using the same tooth controls and varying cross-sectional 
surface areas. Eur J Oral Sci 121:355-362. 
https://doi.org/10.1111/eos.12052 
34.Hirata R, Sampaio C, Machado LS, Coelho PG, Thompson VP, Duarte S, Ayres AP, Giannini M 
(2016) Short- and Long-term Evaluation of Dentin-Resin Interfaces Formed by Etch-and-Rinse 
Adhesives on Plasma-treated Dentin. J Adhes Dent 18:215-222.  
https://doi.org/10.3290/j.jad.a36134 
35. Lazović S, Puač N, Miletić M, Maletić D, Malović G, Mojsilović S, Milenković P, Petrović ZLj (2010) 
Plasma needle treatment of the human peripheral blood-derived multipotent mesenchymal stem 
cells (hPB-MSC). The 3rd IC-PLANTS 11-12. March 2010, Nagoya, Japan  
36. Puač N, Petrović ZLj, Malović G, Dordević A, Živković S, Giba Z, Grubišić D (2006) Measurements of 
voltage–current characteristics of a plasma needle and its effect on plant cells. J Phys D: Appl Phys 
39:3514-3519.  
https://doi.org/10.1088/0022-3727/39/16/S09 
37.Van Oss CJ, Chaudhury MK, Good RJ (1988) Interfacial Lifshitz-van der Waals and Polar 
Interactions in Macroscopic Systems. Chem Rev 88:927-941.  
https://doi.org/10.1021/cr00088a006 
38.Mittal KL (2009) Contact Angle, Wettability and Adhesion. Koninklijke Brill NV, Leiden 
39.Starostina IA, Stoyanov OV, Deberdeev RY (2014) Polymer Surfaces and Interfaces: Acid-Base 
Interactions and Adhesion in Polymer-Metal Systems. Apple Academic Press, Toronto 
40.Zhang Y, Yu Q, Wang Y (2014) Non-thermal atmospheric plasmas in dental restoration: improved 
resin adhesive penetration. J Dent 42:1033-1042.  
https://doi.org/10.1016/j.jdent.2014.05.005 
41.Chen W, Huang J, Du N, Liu XD, Wang XQ, Lv GH, Zhang GP, Guo LH, Yang SZ (2012) Treatment of 
enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition. J 
Appl Phys 112:013304.  
https://doi.org/10.1063/1.4732135 
42.Koban I, Duske K, Jablonowski L, Schröeder K, Nebe B, Sietmann R, Weltmann KD, Hübner NO, 
Kramer A, Kocher T (2011) Atmospheric plasma enhances wettability and osteoblast spreading on 
dentin in vitro: proof-of-principle. Plasma Processes Polym 8:975-982.  
https://doi.org/10.1002/ppap.201100030 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1016/j.jdent.2012.10.002
https://doi.org/10.1590/0103-6440201600486
http://doi.org/10.1111/eos.12388
https://doi.org/10.3290/j.jad.a38999
https://doi.org/10.1111/j.1600-0722.2010.00761.x
https://doi.org/10.1111/eos.12052
https://doi.org/10.3290/j.jad.a36134
https://doi.org/10.1088/0022-3727/39/16/S09
https://doi.org/10.1021/cr00088a006
https://doi.org/10.1016/j.jdent.2014.05.005
https://doi.org/10.1063/1.4732135
https://doi.org/10.1002/ppap.201100030


16 
 

43.Schulein TM (1988) The smear layer on dentin. A status report for the American Journal of 
Dentistry. Am J Dent 1:264-270.  
44.Guo X, Spencer P, Wang Y, Ye Q, Yao X, Williams K (2007) Effects of a solubility enhancer on 
penetration of hydrophobic component in model adhesives into wet demineralized dentin. Dent 
Mater 23:1473-1481.  
https://doi.org/10.1016/j.dental.2006.12.003 
45.Spencer P, Wang Y (2002) Adhesive phase separation at the dentin interface under wet bonding 
conditions. J Biomed Mater Res 62:447-456.  
https://doi.org/10.1002/jbm.10364 
46.Breschi M, Fabiani D, Sandrolini L, Colonna M, Sisti L, Vannini M, Mazzoni A, Ruggeri A, Pashley 
DH, Breschi L (2012) Electrical properties of resin monomers used in restorative dentistry. Dent 
Mater 28:1024-1031.  
https://doi.org/10.1016/j.dental.2012.05.009 
47.Malacarne-Zanon J, Pashley DH, Agee KA, Foulger S, Alves MC, Breschi L, Cadenaro M, Garcia FP, 
Carrilho MR (2009) Effects of ethanol addition on the water sorption/solubility and percent 
conversion of comonomers in model dental adhesives. Dent Mater 25:1275-1284.  
https://doi.org/10.1016/j.dental.2009.03.015 
48.Yiu CK, King NM, Pashley DH, Suh BI, Carvalho RM, Carrilho MR, Tay FR (2004) Effect of resin 
hydrophilicity and water storage on resin strength. Biomaterials 25:5789-5796. 
https://doi.org/10.1016/j.biomaterials.2004.01.026 
49.Cardoso MV, de Almeida Neves A, Mine A, Coutinho E, Van Landuyt K, De Munck J, Van Meerbeek 
B (2011) Current aspects on bonding effectiveness and stability in adhesive dentistry. Aust Dent J 56 
Suppl 1:31-44.  
https://doi.org/10.1111/j.1834-7819.2011.01294.x 
50.Feitosa VP, Sauro S, Ogliari FA, Ogliari AO, Yoshihara K, Zanchi CH, Correr-Sobrinho L, Sinhoreti 
MA, Correr AB, Watson TF, Van Meerbeek B (2014) Impact of hydrophilicity and length of spacer 
chains on the bonding of functional monomers. Dent Mater 30:e317-323.  
https://doi.org/10.1016/j.dental.2014.06.006 
51.Dong X, Li H, Chen M, Wang Y, Yu Q (2015) Plasma treatment of dentin surfaces for improving 
self-etching adhesive/dentin interface bonding. Clin Plasma Med 3:10-16. 
https://doi.org/10.1016/j.cpme.2015.05.002 
52.Kim JH, Han GJ, Kim CK, Oh KH, Chung SN, Chun BH, Cho BH (2016) Promotion of adhesive 
penetration and resin bond strength to dentin using non-thermal atmospheric pressure plasma. Eur J 
Oral Sci 124:89-95.  
https://doi.org/10.1111/eos.12246 
 
 
 
 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1016/j.dental.2006.12.003
https://doi.org/10.1002/jbm.10364
https://doi.org/10.1016/j.dental.2012.05.009
https://doi.org/10.1016/j.dental.2009.03.015
https://doi.org/10.1016/j.biomaterials.2004.01.026
https://doi.org/10.1111/j.1834-7819.2011.01294.x
https://doi.org/10.1016/j.dental.2014.06.006
https://doi.org/10.1016/j.cpme.2015.05.002
https://doi.org/10.1111/eos.12246


17 
 

FIGURE LEGENDS 

Figure 1. Experimental setup of NTAP plasma needle for dentin treatment. [Signal generator, 

amplifier and matching box are main components of the electrical circuit that supplies power to the 

NTAP. The oscilloscope and PC are used to control the power delivered to the NTAP]. 

Figure 2. Schematic of the contact angle analyzer setup and representative images of dentin disks 

with reference liquid drops. A) water on NTAP-treated dentin; B) water on phosphoric acid-treated 

dentin and C) water on untreated dentin. 

Figure 3. Summary of the contact angle data for the three reference liquids on NTAP-treated dentin. 

[Same-type letters or symbols indicate statistical significance within each respective group (p>0.05); 

N=5 samples/group]. 

Figure 4. Surface free energy (SFE) of dentin following various treatments (mean±standard deviation). 

[Same-type letters or symbols indicate statistical significance within each respective group (p>0.05)]. 

Figure 5. Polar (Lewis base and Lewis acid) and apolar components of surface free energy on NTAP-

treated and untreated, control dentin. The tested groups are presented on the x-axis [100% He NTAP 

at 1 W, 2 mm; 100% He NTAP at 1 W, 4 mm, 100% He NTAP at 1 W, 8 mm etc.] 

Figure 6. Contact angle values (mean and standard deviation) for reference liquids and universal 

adhesives following different dentin treatments (group name: treatment_liquid). ‘Control’ denotes 

untreated dentin. Groups ‘SBU’ (Single Bond Universal) and ‘CUB’ (Clearfil Universal Bond) present 

contact angle values of the respective adhesive following the self-etch application protocol. [Groups 

connected with horizontal bars are not significantly different (p>0.05)]. 

Figure 7. Surface free energy (SFE) and its polar (Lewis acid and Lewis base) and apolar components. 

Figure 8. SEM micrographs of dentin following different treatments. All three NTAP treatments had 

the same parameters (3 W and 4 mm) but differed in O2 feed. Dentin was acid etched for 15 s. No 

treatment was performed in the control group. 
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Table 1. Allocation of teeth to groups and subgroups according to treatments and reference liquids. 

Group   Surface treatment 

parameters 

Reference liquid Number of teeth 

NTAP 

100% He 

1 W, 2 mm 

Distilled water 

Ethylene-glycol 

Diiodomethane 

5 

5 

5 

1 W, 4 mm 

Distilled water 

Ethylene-glycol 

Diiodomethane 

5 

5 

5 

1 W, 8 mm 

Distilled water 

Ethylene-glycol  

Diiodomethane 

5 

5 

5 

3 W, 2 mm 

Distilled water 

Ethylene-glycol 

Diiodomethane 

5 

5 

5 

3 W, 4 mm 

Distilled water 

Ethylene-glycol 

Diiodomethane 

5 

5 

5 

3 W, 8 mm 

Distilled water 

Ethylene-glycol 

Diiodomethane 

5 

5 

5 

NTAP 

99% He + 1% O2 

1 W, 2 mm 

Distilled water 

Ethylene-glycol 

Diiodomethane 

5 

5 

5 

1 W, 4 mm 

Distilled water 

Ethylene-glycol 

Diiodomethane 

5 

5 

5 

3 W, 2 mm 

Distilled water 

Ethylene-glycol 

Diiodomethane 

5 

5 

5 

3 W, 4 mm 

Distilled water 

Ethylene-glycol 

Diiodomethane 

5 

5 

5 

NTAP 

98.5% He + 1.5 % O2 

1 W, 2 mm 

Distilled water 

Ethylene-glycol 

Diiodomethane 

5 

5 

5 

1 W, 4 mm 

Distilled water 

Ethylene-glycol 

Diiodomethane 

5 

5 

5 

3 W, 2 mm 

Distilled water 

Ethylene-glycol 

Diiodomethane 

5 

5 

5 

3 W, 4 mm 

Distilled water 

Ethylene-glycol 

Diiodomethane 

5 

5 

5 

Phosphoric acid 15 s 

Distilled water 

Ethylene-glycol 

Diiodomethane 

5 

5 

5 

Control group No treatment 

Distilled water 

Ethylene-glycol 

Diiodomethane 

5 

5 

5 

 

ER_adhesive 

 

ER application 

protocol 

SBU 5 

CUB 5 

 

SE_adhesive 

SE application 

protocol 
SBU 5 

Tables



CUB 5 

NTAP_adhesive 
98.5% He + 1.5 % O2 

3 W, 4 mm 
SBU 5 

NTAP_adhesive  
98.5% He + 1.5 % O2 

3 W, 4 mm 
CUB 5 

SEM 

(control x 1 teeth; phosphoric acid x 1 teeth;  

100% He NTAP x 2 teeth; 99% He+1% O2 NTAP x 2 teeth;  

98.5% He+1.5% O2 NTAP x 2 teeth) 

8 

Abbreviations: NTAP - Non-thermal atmospheric plasma; SBU - Single Bond Universal; CUB - Clearfil 

Universal Bond; SEM - Scanning Electron Microscopy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Table 2. Materials used in this study. 

Material 

(Code/Batch) 
Manufacturer Composition* Application protocol 

Single Bond 

Universal 

(SBU/595822) 

3M ESPE,  

St. Paul, MN, 

USA 

BisGMA (15-25%), HEMA (15-

25%), DMDMA (5-15%), ethanol 

(10-15%), water (10-15%), silane 

treated silica (5-15%),1,10-decanediol 

methacrylated phosphates (1-10%), 

copolymer of acrylic and itaconic acid 

(1-5%), dimethylaminobenzoat 

(<2%), camphorquinone (<2%), 

DMAEMA (<2%), methylethylketone 

(<0.5%) 

Etch-and-rinse:  

Apply etchant for 15 s 

Rinse for 15 sBlot-dry with a 

cotton pellet 

Apply SBU to dentin using a 

disposable applicator  and rub it 

in for 20 s 

Air dry with a gentle stream of  

air for about 5 s 

 

 

 

Self-etch: 

Rinse and dry 

Apply SBU to dentin using a 

disposable applicator  and rub it 

in for 20 s 

Air dry with a gentle stream of  

air for about 5 s 

 

 

 

Clearfil 

Universal 

Bond 

(CUB/ 

BN0010) 

Kuraray 

Noritake 

Dental Inc., 

Okayama, 

Japan 

BisGMA (15-35%), HEMA (10-

35%), ethanol (<20%), 10-MDP, 

hydrophilic aliphatic dimethacrylate, 

colloidal silica, camphorquinone, 

silane, accelerators, initiators, water 

Etch-and-rinse:  

Apply etchant for 15 s 

Rinse for 15 s 

Blot-dry with a cotton pellet 

Apply CUB 

Dry the entire cavity by blowing 

mild air more than 5 s 

 

Self-etch:  

Rinse and dry 

Apply CUB with a rubbing 

motion to the entire cavity wall 

with an applicator brush  

Dry the entire cavity by blowing 

mild air more than 5 s 

 

Scotchbond 

Universal 

Etchant 

(Acid/603390) 

3M ESPE, 

St. Paul, MN, 

USA 

Water, phosphoric acid, synthetic 

amorphous silica, fumed, crystalline 

free, polyethylene glycol, aluminum 

oxide 

Apply etchant for 15 s 

Rinse for 15 s 

*Manufacturers’ data. Abbreviations: BisGMA - bisphenol A diglycidylmethacrylate, HEMA - 2-

hydroxyethyl methacrylate, DMDMA - decamethylenedimethacrylate, DMAEMA - dimethylaminoethyl-

dimethacrylate, 10-MDP - 10-Methacryloyloxydecyl dihydrogen phosphate  
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