Živković, Srđan

Link to this page

Authority KeyName Variants
orcid::0000-0003-2241-7344
  • Živković, Srđan (4)
Projects

Author's Bibliography

Dental arch monitoring by splines fitting error during orthodontic treatment using 3D digital models

Majstorović, Nemanja; Živković, Srđan; Glišić, Branislav

(Vojnomedicinska akademija - Institut za naučne informacije, Beograd, 2019)

TY  - JOUR
AU  - Majstorović, Nemanja
AU  - Živković, Srđan
AU  - Glišić, Branislav
PY  - 2019
UR  - https://smile.stomf.bg.ac.rs/handle/123456789/2441
AB  - Backrgound/Aim. Researchers in the field of dentistry have been conducting research into modelling and defining dental arches equitations. Nowadays, when 3D digital modelling is commonly utilized in dentistry, the approach to modelling, analysis and synthesis has changed. Clinical researches are related to aesthetic and functional analysis. The aim of this study was to increase repeatability and accuracy of defining and determining the coordinate system of the jaw as well as to defining mathematical criteria for monitoring and evaluating orthodontic treatment. Methods. In this study, we used the plaster models of the jaw, optical scanner with structured light, 3D digital models, computer aided design (CAD) engineering tools adjusting the coordinate system, spline fitting of 3rd, 4th, 5th, 6th, 7th and 8th degrees. Results. Splines of 3rd, 4th, 5th, 6th, 7th and 8th degrees were fitted from the initial state (K0) in all 10 successive controls (K1, K2, K3,…, K10). All splines were fitted through 12 points, from the right to the left side of the jaw: 6-5-4-3-2-1-1-2-3-4-5-6. Tabular and graphic presentations of the maximum and average deviation of dental arch fitting curves in successive controls were given. Conclusion. The parameters of the maximum and average errors of fitting curves converge the dental arch values that are lower than the accuracy of the used optical scanners. The average error of fitting provides a general picture of the entire dental arch at each stage of treatment. Maximum error fitting points at a specified tooth where the largest deviation.
AB  - Uvod/Cilj. Istraživači u oblasti stomatologije, posebno kliničari, već dugo se bave istraživanjima koja se odnose na modeliranje i definisanje oblika i parametara zubnog luka. Danas, kada je 3D digitalno modeliranje postalo uobičajena praksa u stomatologiji, promenio se i prilaz modeliranju, analizi i sintezi u ortodonciji. Klinička istraživanja oblika zubnog luka direktno se odnose na estetsku i funkcionalnu analizu zubnog niza (nivelacija, okluzija, zagrižaj). Cilj rada bio je da se poveća ponovljivost i preciznost definisanja i određivanja koordinatnog sistema vilice i definišu matematički kriterijumi za praćenje i ocenjivanje ortodontske terapije. Metode. U radu su koršćeni gipsani modeli vilice, optički skener sa strukturisanom svetlošću, 3D digitalni modeli vilice i Computer Aided Design (CAD) i inženjerski alati. Sprovedeno je podešavanje koordinatnog sistema i fitovanje splajnova trećeg, četvrtog, petog, šestog, sedmog i osmog stepena. Rezultati. Splajnovi (trećeg, četvrtog, petog, šestog, sedmog i osmog stepena) fitovani su u odnosu na početno stanje (K0), za svih 10 uzastopnih kolona (K1, K2, K3,... K10). Svi splajnovi su fitovani u 12 tačaka, sa leve i desne strane vilice: 6-5-4-3-2-1-1-2-3-4-5-6. Dat je tabelarni i grafički prikaz maksimalnih i prosečnih odstupanja fitovanih krivih linija dentalnog luka u sukcesivnim kontrolama. Zaključak. Parametri maksimalne i prosečne greške fitovanja krivih linija dentalnog luka konvergiraju vrednostima koje su manje od tačnosti korišćenih optičkih skenera. Prosečna greška fitovanja daje opštu sliku celokupnog dentalnog luka u svakoj od faza terapije. Maksimalna greška fitovanja ukazuje na tačno određeni zub gde su odstupanja najveća.
PB  - Vojnomedicinska akademija - Institut za naučne informacije, Beograd
T2  - Vojnosanitetski pregled
T1  - Dental arch monitoring by splines fitting error during orthodontic treatment using 3D digital models
T1  - Praćenje oblika zubnog luka odstupanjima fitovanih splajnova tokom ortodontske terapije primenom 3D digitalnih modela
VL  - 76
IS  - 3
SP  - 233
EP  - 240
DO  - 10.2298/VSP161212067M
ER  - 
@article{
author = "Majstorović, Nemanja and Živković, Srđan and Glišić, Branislav",
year = "2019",
abstract = "Backrgound/Aim. Researchers in the field of dentistry have been conducting research into modelling and defining dental arches equitations. Nowadays, when 3D digital modelling is commonly utilized in dentistry, the approach to modelling, analysis and synthesis has changed. Clinical researches are related to aesthetic and functional analysis. The aim of this study was to increase repeatability and accuracy of defining and determining the coordinate system of the jaw as well as to defining mathematical criteria for monitoring and evaluating orthodontic treatment. Methods. In this study, we used the plaster models of the jaw, optical scanner with structured light, 3D digital models, computer aided design (CAD) engineering tools adjusting the coordinate system, spline fitting of 3rd, 4th, 5th, 6th, 7th and 8th degrees. Results. Splines of 3rd, 4th, 5th, 6th, 7th and 8th degrees were fitted from the initial state (K0) in all 10 successive controls (K1, K2, K3,…, K10). All splines were fitted through 12 points, from the right to the left side of the jaw: 6-5-4-3-2-1-1-2-3-4-5-6. Tabular and graphic presentations of the maximum and average deviation of dental arch fitting curves in successive controls were given. Conclusion. The parameters of the maximum and average errors of fitting curves converge the dental arch values that are lower than the accuracy of the used optical scanners. The average error of fitting provides a general picture of the entire dental arch at each stage of treatment. Maximum error fitting points at a specified tooth where the largest deviation., Uvod/Cilj. Istraživači u oblasti stomatologije, posebno kliničari, već dugo se bave istraživanjima koja se odnose na modeliranje i definisanje oblika i parametara zubnog luka. Danas, kada je 3D digitalno modeliranje postalo uobičajena praksa u stomatologiji, promenio se i prilaz modeliranju, analizi i sintezi u ortodonciji. Klinička istraživanja oblika zubnog luka direktno se odnose na estetsku i funkcionalnu analizu zubnog niza (nivelacija, okluzija, zagrižaj). Cilj rada bio je da se poveća ponovljivost i preciznost definisanja i određivanja koordinatnog sistema vilice i definišu matematički kriterijumi za praćenje i ocenjivanje ortodontske terapije. Metode. U radu su koršćeni gipsani modeli vilice, optički skener sa strukturisanom svetlošću, 3D digitalni modeli vilice i Computer Aided Design (CAD) i inženjerski alati. Sprovedeno je podešavanje koordinatnog sistema i fitovanje splajnova trećeg, četvrtog, petog, šestog, sedmog i osmog stepena. Rezultati. Splajnovi (trećeg, četvrtog, petog, šestog, sedmog i osmog stepena) fitovani su u odnosu na početno stanje (K0), za svih 10 uzastopnih kolona (K1, K2, K3,... K10). Svi splajnovi su fitovani u 12 tačaka, sa leve i desne strane vilice: 6-5-4-3-2-1-1-2-3-4-5-6. Dat je tabelarni i grafički prikaz maksimalnih i prosečnih odstupanja fitovanih krivih linija dentalnog luka u sukcesivnim kontrolama. Zaključak. Parametri maksimalne i prosečne greške fitovanja krivih linija dentalnog luka konvergiraju vrednostima koje su manje od tačnosti korišćenih optičkih skenera. Prosečna greška fitovanja daje opštu sliku celokupnog dentalnog luka u svakoj od faza terapije. Maksimalna greška fitovanja ukazuje na tačno određeni zub gde su odstupanja najveća.",
publisher = "Vojnomedicinska akademija - Institut za naučne informacije, Beograd",
journal = "Vojnosanitetski pregled",
title = "Dental arch monitoring by splines fitting error during orthodontic treatment using 3D digital models, Praćenje oblika zubnog luka odstupanjima fitovanih splajnova tokom ortodontske terapije primenom 3D digitalnih modela",
volume = "76",
number = "3",
pages = "233-240",
doi = "10.2298/VSP161212067M"
}
Majstorović, N., Živković, S.,& Glišić, B.. (2019). Dental arch monitoring by splines fitting error during orthodontic treatment using 3D digital models. in Vojnosanitetski pregled
Vojnomedicinska akademija - Institut za naučne informacije, Beograd., 76(3), 233-240.
https://doi.org/10.2298/VSP161212067M
Majstorović N, Živković S, Glišić B. Dental arch monitoring by splines fitting error during orthodontic treatment using 3D digital models. in Vojnosanitetski pregled. 2019;76(3):233-240.
doi:10.2298/VSP161212067M .
Majstorović, Nemanja, Živković, Srđan, Glišić, Branislav, "Dental arch monitoring by splines fitting error during orthodontic treatment using 3D digital models" in Vojnosanitetski pregled, 76, no. 3 (2019):233-240,
https://doi.org/10.2298/VSP161212067M . .
5
3
6

New Improved Method of Setting the Jaw's Coordinate System

Živković, Srđan; Majstorović, Nemanja; Glišić, Branislav; Kramar, Davorin

(Springer-Verlag Berlin, Berlin, 2019)

TY  - CONF
AU  - Živković, Srđan
AU  - Majstorović, Nemanja
AU  - Glišić, Branislav
AU  - Kramar, Davorin
PY  - 2019
UR  - https://smile.stomf.bg.ac.rs/handle/123456789/2423
AB  - Precise and reproducible alignment of the coordinate system plays a key role in the processes of monitoring geometric parameters. In cases of long-term processes, which are executed in multiple phases, errors in setting the coordinate system can lead to wrong conclusions and mismanagement of these processes. Orthodontic therapy, ie teeth leveling, lasts for one year with controls every month. The geometric parameters (teeth positions) are monitored by the dental arch equations. During each control, the current state is compared with previous control. Conditio sine qua non is precisely and repeatably setting of the jaw's coordinate system. The ABO method (American Board of Orthodontics; digital model orientation) does not provide repeatability in successive controls. In this study, a new method of setting the coordinate system of the jaw is presented. To ensure as user-friendly procedure as possible a simple algorithm is listed. A case study on digital dental model analyses for dental arch curve mathematical definition is presented at the end of the study. This is an example of the application of engineering methods in non-engineering areas.
PB  - Springer-Verlag Berlin, Berlin
C3  - Proceedings of the 12th International Conference on Measurement & Quality Control - Cyber Physical
T1  - New Improved Method of Setting the Jaw's Coordinate System
SP  - 170
EP  - 184
DO  - 10.1007/978-3-030-18177-2_17
ER  - 
@conference{
author = "Živković, Srđan and Majstorović, Nemanja and Glišić, Branislav and Kramar, Davorin",
year = "2019",
abstract = "Precise and reproducible alignment of the coordinate system plays a key role in the processes of monitoring geometric parameters. In cases of long-term processes, which are executed in multiple phases, errors in setting the coordinate system can lead to wrong conclusions and mismanagement of these processes. Orthodontic therapy, ie teeth leveling, lasts for one year with controls every month. The geometric parameters (teeth positions) are monitored by the dental arch equations. During each control, the current state is compared with previous control. Conditio sine qua non is precisely and repeatably setting of the jaw's coordinate system. The ABO method (American Board of Orthodontics; digital model orientation) does not provide repeatability in successive controls. In this study, a new method of setting the coordinate system of the jaw is presented. To ensure as user-friendly procedure as possible a simple algorithm is listed. A case study on digital dental model analyses for dental arch curve mathematical definition is presented at the end of the study. This is an example of the application of engineering methods in non-engineering areas.",
publisher = "Springer-Verlag Berlin, Berlin",
journal = "Proceedings of the 12th International Conference on Measurement & Quality Control - Cyber Physical",
title = "New Improved Method of Setting the Jaw's Coordinate System",
pages = "170-184",
doi = "10.1007/978-3-030-18177-2_17"
}
Živković, S., Majstorović, N., Glišić, B.,& Kramar, D.. (2019). New Improved Method of Setting the Jaw's Coordinate System. in Proceedings of the 12th International Conference on Measurement & Quality Control - Cyber Physical
Springer-Verlag Berlin, Berlin., 170-184.
https://doi.org/10.1007/978-3-030-18177-2_17
Živković S, Majstorović N, Glišić B, Kramar D. New Improved Method of Setting the Jaw's Coordinate System. in Proceedings of the 12th International Conference on Measurement & Quality Control - Cyber Physical. 2019;:170-184.
doi:10.1007/978-3-030-18177-2_17 .
Živković, Srđan, Majstorović, Nemanja, Glišić, Branislav, Kramar, Davorin, "New Improved Method of Setting the Jaw's Coordinate System" in Proceedings of the 12th International Conference on Measurement & Quality Control - Cyber Physical (2019):170-184,
https://doi.org/10.1007/978-3-030-18177-2_17 . .
1
1

The advanced model definition and analysis of orthodontic parameters on 3D digital models

Majstorović, Nemanja; Živković, Srđan; Glišić, Branislav

(Srpsko lekarsko društvo, Beograd, 2017)

TY  - JOUR
AU  - Majstorović, Nemanja
AU  - Živković, Srđan
AU  - Glišić, Branislav
PY  - 2017
UR  - https://smile.stomf.bg.ac.rs/handle/123456789/2267
AB  - Introduction/Objective Digital 3D modeling is slowly becoming an everyday orthodontic practice, and after two decades of research and development it is a basic element of e-orthodontics. The aim of this study was development and use of geometric entities on 3D digital models for diagnosing, planning and monitoring of orthodontic therapy, by using CAD (computer aided design) systems. Methods Statistical analysis and synthesis of 54 orthodontic parameters (28 in the upper and 26 in the lower jaw), defining three hypotheses and their testing, the application of the t-test. Results All three hypotheses are confirmed, convenience of using geometric entities, higher accuracy of 3D digital models, and more substantial displacement of teeth in the first six months of therapy (Student's t-test). After the first six months, distances in the x-y plane (occlusal plane) were bigger in both the upper and the lower jaw; additionally, the distances in the y-z plane (medial plane) decreased on the left and right side, so we can say that the first phase of therapy had success and that both jaws are wider. At the next four controls, parameters showed slight progress that was not statistically significant. Overall, after 11 months of therapy, there was a considerable improvement in the x-y plane, while changes in distances of clinical crown heights were very small. This could be explained by the fact that, during therapy, by using different arches, upper molars were pushed inside, toward the palate. Analyzing 3D computer models, we could notice that in this plane displacement of the upper left first molar was larger. Conclusion The use of geometric entities for defining orthodontic parameters gives us new possibilities for accurate and reliable analysis of patient's orthodontic condition.
AB  - Uvod/Cilj 3D modeliranje postaje sve više svakodnevna ortodontska praksa, koja posle dve decenije istraživanja i razvoja biva bazni element e-ortodoncije. Cilj rada je bio da se izvrši razvoj i pokaže primena geometrijskih entiteta (GE) na 3D modelima za dijagnozu, planiranje i praćenje ortodontske terapije primenom opštih kompjuterski dizajniranih sistema. Metode Statistička analiza i sinteza 54 ortodontska parametra (28 za gornju vilicu i 26 za donju vilicu), definisanje tri hipoteze i njihovo testiranje, primena t-testa. Rezultati Potvrđene su sve tri hipoteze: pogodnost za primenu GE, veća tačnost 3D modela i veće pomeranje zuba u prvih šest meseci terapije (t-test). Posle prvih šest meseci uočeno je da su vrednosti rastojanja u x-y ravni (okluzalna ravan) u gornjoj i donjoj vilici veće, a da je pored toga došlo do smanjenja rastojanja u y-z ravni (medijalna ravan) i sa leve i sa desne strane, što znači da je prva faza terapije uspešno okončana i da je došlo do proširenja obe vilice u širini. U naredne četiri kontrole parametri su uglavnom pokazivali blagi rast, koji nije bio statistički toliko značajan. Sveukupno kad se sagleda, nakon jedanaest meseci terapije vidljiv je napredak u x-y ravni, dok su najmanja pomeranja viđena kod kliničkih visina krunica zuba. Ovo se objašnjava činjenicom da su tokom terapije, primenom određenih lukova, gornji molari uvučeni unutra, tj. pomereni prema nepcu. Analizom 3D digitalnih modela moguće je uočiti da je nastalo veće pomeranje kod gornjeg levog molara u ovoj ravni. Zaključak Primena GE za definisanje ortodontskih parametara daje nove mogućnosti za tačnu i pouzdanu analizu ortodontskog stanja pacijenta.
PB  - Srpsko lekarsko društvo, Beograd
T2  - Srpski arhiv za celokupno lekarstvo
T1  - The advanced model definition and analysis of orthodontic parameters on 3D digital models
T1  - Novi model za definisanje i analizu ortodontskih parametara na 3D digitalnim modelima
VL  - 145
IS  - 1-2
SP  - 49
EP  - 57
DO  - 10.2298/SARH151207011M
ER  - 
@article{
author = "Majstorović, Nemanja and Živković, Srđan and Glišić, Branislav",
year = "2017",
abstract = "Introduction/Objective Digital 3D modeling is slowly becoming an everyday orthodontic practice, and after two decades of research and development it is a basic element of e-orthodontics. The aim of this study was development and use of geometric entities on 3D digital models for diagnosing, planning and monitoring of orthodontic therapy, by using CAD (computer aided design) systems. Methods Statistical analysis and synthesis of 54 orthodontic parameters (28 in the upper and 26 in the lower jaw), defining three hypotheses and their testing, the application of the t-test. Results All three hypotheses are confirmed, convenience of using geometric entities, higher accuracy of 3D digital models, and more substantial displacement of teeth in the first six months of therapy (Student's t-test). After the first six months, distances in the x-y plane (occlusal plane) were bigger in both the upper and the lower jaw; additionally, the distances in the y-z plane (medial plane) decreased on the left and right side, so we can say that the first phase of therapy had success and that both jaws are wider. At the next four controls, parameters showed slight progress that was not statistically significant. Overall, after 11 months of therapy, there was a considerable improvement in the x-y plane, while changes in distances of clinical crown heights were very small. This could be explained by the fact that, during therapy, by using different arches, upper molars were pushed inside, toward the palate. Analyzing 3D computer models, we could notice that in this plane displacement of the upper left first molar was larger. Conclusion The use of geometric entities for defining orthodontic parameters gives us new possibilities for accurate and reliable analysis of patient's orthodontic condition., Uvod/Cilj 3D modeliranje postaje sve više svakodnevna ortodontska praksa, koja posle dve decenije istraživanja i razvoja biva bazni element e-ortodoncije. Cilj rada je bio da se izvrši razvoj i pokaže primena geometrijskih entiteta (GE) na 3D modelima za dijagnozu, planiranje i praćenje ortodontske terapije primenom opštih kompjuterski dizajniranih sistema. Metode Statistička analiza i sinteza 54 ortodontska parametra (28 za gornju vilicu i 26 za donju vilicu), definisanje tri hipoteze i njihovo testiranje, primena t-testa. Rezultati Potvrđene su sve tri hipoteze: pogodnost za primenu GE, veća tačnost 3D modela i veće pomeranje zuba u prvih šest meseci terapije (t-test). Posle prvih šest meseci uočeno je da su vrednosti rastojanja u x-y ravni (okluzalna ravan) u gornjoj i donjoj vilici veće, a da je pored toga došlo do smanjenja rastojanja u y-z ravni (medijalna ravan) i sa leve i sa desne strane, što znači da je prva faza terapije uspešno okončana i da je došlo do proširenja obe vilice u širini. U naredne četiri kontrole parametri su uglavnom pokazivali blagi rast, koji nije bio statistički toliko značajan. Sveukupno kad se sagleda, nakon jedanaest meseci terapije vidljiv je napredak u x-y ravni, dok su najmanja pomeranja viđena kod kliničkih visina krunica zuba. Ovo se objašnjava činjenicom da su tokom terapije, primenom određenih lukova, gornji molari uvučeni unutra, tj. pomereni prema nepcu. Analizom 3D digitalnih modela moguće je uočiti da je nastalo veće pomeranje kod gornjeg levog molara u ovoj ravni. Zaključak Primena GE za definisanje ortodontskih parametara daje nove mogućnosti za tačnu i pouzdanu analizu ortodontskog stanja pacijenta.",
publisher = "Srpsko lekarsko društvo, Beograd",
journal = "Srpski arhiv za celokupno lekarstvo",
title = "The advanced model definition and analysis of orthodontic parameters on 3D digital models, Novi model za definisanje i analizu ortodontskih parametara na 3D digitalnim modelima",
volume = "145",
number = "1-2",
pages = "49-57",
doi = "10.2298/SARH151207011M"
}
Majstorović, N., Živković, S.,& Glišić, B.. (2017). The advanced model definition and analysis of orthodontic parameters on 3D digital models. in Srpski arhiv za celokupno lekarstvo
Srpsko lekarsko društvo, Beograd., 145(1-2), 49-57.
https://doi.org/10.2298/SARH151207011M
Majstorović N, Živković S, Glišić B. The advanced model definition and analysis of orthodontic parameters on 3D digital models. in Srpski arhiv za celokupno lekarstvo. 2017;145(1-2):49-57.
doi:10.2298/SARH151207011M .
Majstorović, Nemanja, Živković, Srđan, Glišić, Branislav, "The advanced model definition and analysis of orthodontic parameters on 3D digital models" in Srpski arhiv za celokupno lekarstvo, 145, no. 1-2 (2017):49-57,
https://doi.org/10.2298/SARH151207011M . .
4
3
6

Examination of scanner precision by analysing orthodontic parameters

Majstorović, Nemanja; Čerče, Luka; Kramar, Davorin; Soković, Mirko; Glišić, Branislav; Majstorović, Vidosav; Živković, Srđan

(Udruženje stomatologa Balkana, 2017)

TY  - JOUR
AU  - Majstorović, Nemanja
AU  - Čerče, Luka
AU  - Kramar, Davorin
AU  - Soković, Mirko
AU  - Glišić, Branislav
AU  - Majstorović, Vidosav
AU  - Živković, Srđan
PY  - 2017
UR  - https://smile.stomf.bg.ac.rs/handle/123456789/2244
AB  - Background: 3D modelling in orthodontics is becoming an increasingly widespread technique in practice. One of the significant questions already being asked is related to determining the precision of the scanner used for generating surfaces on a 3D model of the jaw. Materials and methods: This research was conducted by generating a set of identical 3D models on Atos optical 3D scanner and Lazak Scan laboratory scanner, which precision was established by measuring a set of orthodontic parameters (54 overall) in all three orthodontic planes. In this manner we explored their precision in space, since they are used for generating spatial models - 3D jaws. Results: There were significant differences between parameters scanned with Atos and Lazak Scan. The smallest difference was 0.017 mm, and the biggest 1.109 mm. Conclusion: This research reveals that both scanners (Atos and Lazak Scan), which belong to general purpose scanners, based on precision parameters can be used in orthodontics. Early analyses indicate that the reference scanner in terms of precision is Atos.
PB  - Udruženje stomatologa Balkana
T2  - Balkan Journal of Dental Medicine
T1  - Examination of scanner precision by analysing orthodontic parameters
VL  - 21
IS  - 1
SP  - 32
EP  - 43
DO  - 10.1515/bjdm-2017-0005
ER  - 
@article{
author = "Majstorović, Nemanja and Čerče, Luka and Kramar, Davorin and Soković, Mirko and Glišić, Branislav and Majstorović, Vidosav and Živković, Srđan",
year = "2017",
abstract = "Background: 3D modelling in orthodontics is becoming an increasingly widespread technique in practice. One of the significant questions already being asked is related to determining the precision of the scanner used for generating surfaces on a 3D model of the jaw. Materials and methods: This research was conducted by generating a set of identical 3D models on Atos optical 3D scanner and Lazak Scan laboratory scanner, which precision was established by measuring a set of orthodontic parameters (54 overall) in all three orthodontic planes. In this manner we explored their precision in space, since they are used for generating spatial models - 3D jaws. Results: There were significant differences between parameters scanned with Atos and Lazak Scan. The smallest difference was 0.017 mm, and the biggest 1.109 mm. Conclusion: This research reveals that both scanners (Atos and Lazak Scan), which belong to general purpose scanners, based on precision parameters can be used in orthodontics. Early analyses indicate that the reference scanner in terms of precision is Atos.",
publisher = "Udruženje stomatologa Balkana",
journal = "Balkan Journal of Dental Medicine",
title = "Examination of scanner precision by analysing orthodontic parameters",
volume = "21",
number = "1",
pages = "32-43",
doi = "10.1515/bjdm-2017-0005"
}
Majstorović, N., Čerče, L., Kramar, D., Soković, M., Glišić, B., Majstorović, V.,& Živković, S.. (2017). Examination of scanner precision by analysing orthodontic parameters. in Balkan Journal of Dental Medicine
Udruženje stomatologa Balkana., 21(1), 32-43.
https://doi.org/10.1515/bjdm-2017-0005
Majstorović N, Čerče L, Kramar D, Soković M, Glišić B, Majstorović V, Živković S. Examination of scanner precision by analysing orthodontic parameters. in Balkan Journal of Dental Medicine. 2017;21(1):32-43.
doi:10.1515/bjdm-2017-0005 .
Majstorović, Nemanja, Čerče, Luka, Kramar, Davorin, Soković, Mirko, Glišić, Branislav, Majstorović, Vidosav, Živković, Srđan, "Examination of scanner precision by analysing orthodontic parameters" in Balkan Journal of Dental Medicine, 21, no. 1 (2017):32-43,
https://doi.org/10.1515/bjdm-2017-0005 . .
2