Palcevskis, Eriks

Link to this page

Authority KeyName Variants
2f8d1435-1c4f-4828-b455-1a263b0d1437
  • Palcevskis, Eriks (1)
Projects

Author's Bibliography

Composite nanostructured hydroxyapatite/yttrium stabilized zirconia dental inserts - The processing and application as dentin substitutes

Ayoub, Giuma; Veljović, Đorđe; Ležaja-Zebić, Maja; Miletić, Vesna; Palcevskis, Eriks; Petrović, Rada; Janaćković, Đorđe

(Elsevier Sci Ltd, Oxford, 2018)

TY  - JOUR
AU  - Ayoub, Giuma
AU  - Veljović, Đorđe
AU  - Ležaja-Zebić, Maja
AU  - Miletić, Vesna
AU  - Palcevskis, Eriks
AU  - Petrović, Rada
AU  - Janaćković, Đorđe
PY  - 2018
UR  - https://smile.stomf.bg.ac.rs/handle/123456789/2305
AB  - The objective of the study was to process nano-structured hydroxyapatite/yttrium-stabilized zirconia bioceramic and to investigate the possibilities of its application as dentin replacement in the form of dental inserts. The processing conditions were varied in order to optimize phase composition, microstructure, fracture toughness, hardness and shear bond strength (SBS) between the obtained composite inserts and restorative materials, following either the "total-etch" or "self-etch" clinical protocol. Composite nano-powder, obtained by mixing and homogenization of 80 wt% of stoichiometric hydroxyapatite (HAp) synthesized by modified precipitation method and 20wt% of yttrium-stabilized ZrO2 (YSZ) synthesized by plasma method, was isostatically pressed into cylinder-shaped green bodies. After dilatometric analysis, HAp/YSZ inserts were sintered in the temperature range from 1200 degrees C to 1300 degrees C. Hardness and fracture toughness of sintered inserts were ranged between 3.90 +/- 0.20 - 3.95 +/- 0.12 GPa and 1.82 +/- 0.04 - 1.88 +/- 0.03 MPam(1/2), respectively. Microstructural analysis of biphasic HAp/t-ZrO2 inserts indicated two potential fracture mechanisms for fracture toughness increasing. Sintering temperature and different clinical protocols affected SBS between processed inserts and commercial dental restorative materials. Maximum SBS values of 10.50 +/- 4.94 MPa (mean standard deviation) were reached in inserts sintered at 1300 degrees C, following the "self-etch" protocol of adhesive application. It could be concluded that resin-based composites could be strongly bonded to HAp/YSZ inserts, preferably with self-etch" adhesive application. In addition, the values of fracture toughness and hardness of the obtained inserts indicated the possibility of their usage as dentin substitutes, which could be a good prerequisite for satisfactory mechanics of restored teeth.
PB  - Elsevier Sci Ltd, Oxford
T2  - Ceramics International
T1  - Composite nanostructured hydroxyapatite/yttrium stabilized zirconia dental inserts - The processing and application as dentin substitutes
VL  - 44
IS  - 15
SP  - 18200
EP  - 18208
DO  - 10.1016/j.ceramint.2018.07.028
ER  - 
@article{
author = "Ayoub, Giuma and Veljović, Đorđe and Ležaja-Zebić, Maja and Miletić, Vesna and Palcevskis, Eriks and Petrović, Rada and Janaćković, Đorđe",
year = "2018",
abstract = "The objective of the study was to process nano-structured hydroxyapatite/yttrium-stabilized zirconia bioceramic and to investigate the possibilities of its application as dentin replacement in the form of dental inserts. The processing conditions were varied in order to optimize phase composition, microstructure, fracture toughness, hardness and shear bond strength (SBS) between the obtained composite inserts and restorative materials, following either the "total-etch" or "self-etch" clinical protocol. Composite nano-powder, obtained by mixing and homogenization of 80 wt% of stoichiometric hydroxyapatite (HAp) synthesized by modified precipitation method and 20wt% of yttrium-stabilized ZrO2 (YSZ) synthesized by plasma method, was isostatically pressed into cylinder-shaped green bodies. After dilatometric analysis, HAp/YSZ inserts were sintered in the temperature range from 1200 degrees C to 1300 degrees C. Hardness and fracture toughness of sintered inserts were ranged between 3.90 +/- 0.20 - 3.95 +/- 0.12 GPa and 1.82 +/- 0.04 - 1.88 +/- 0.03 MPam(1/2), respectively. Microstructural analysis of biphasic HAp/t-ZrO2 inserts indicated two potential fracture mechanisms for fracture toughness increasing. Sintering temperature and different clinical protocols affected SBS between processed inserts and commercial dental restorative materials. Maximum SBS values of 10.50 +/- 4.94 MPa (mean standard deviation) were reached in inserts sintered at 1300 degrees C, following the "self-etch" protocol of adhesive application. It could be concluded that resin-based composites could be strongly bonded to HAp/YSZ inserts, preferably with self-etch" adhesive application. In addition, the values of fracture toughness and hardness of the obtained inserts indicated the possibility of their usage as dentin substitutes, which could be a good prerequisite for satisfactory mechanics of restored teeth.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Ceramics International",
title = "Composite nanostructured hydroxyapatite/yttrium stabilized zirconia dental inserts - The processing and application as dentin substitutes",
volume = "44",
number = "15",
pages = "18200-18208",
doi = "10.1016/j.ceramint.2018.07.028"
}
Ayoub, G., Veljović, Đ., Ležaja-Zebić, M., Miletić, V., Palcevskis, E., Petrović, R.,& Janaćković, Đ.. (2018). Composite nanostructured hydroxyapatite/yttrium stabilized zirconia dental inserts - The processing and application as dentin substitutes. in Ceramics International
Elsevier Sci Ltd, Oxford., 44(15), 18200-18208.
https://doi.org/10.1016/j.ceramint.2018.07.028
Ayoub G, Veljović Đ, Ležaja-Zebić M, Miletić V, Palcevskis E, Petrović R, Janaćković Đ. Composite nanostructured hydroxyapatite/yttrium stabilized zirconia dental inserts - The processing and application as dentin substitutes. in Ceramics International. 2018;44(15):18200-18208.
doi:10.1016/j.ceramint.2018.07.028 .
Ayoub, Giuma, Veljović, Đorđe, Ležaja-Zebić, Maja, Miletić, Vesna, Palcevskis, Eriks, Petrović, Rada, Janaćković, Đorđe, "Composite nanostructured hydroxyapatite/yttrium stabilized zirconia dental inserts - The processing and application as dentin substitutes" in Ceramics International, 44, no. 15 (2018):18200-18208,
https://doi.org/10.1016/j.ceramint.2018.07.028 . .
26
13
23