Majstorović, Nemanja

Link to this page

Authority KeyName Variants
d704ccc8-2195-4418-ac0c-8a8e71eb33c8
  • Majstorović, Nemanja (6)
Projects

Author's Bibliography

Dental arch monitoring by splines fitting error during orthodontic treatment using 3D digital models

Majstorović, Nemanja; Živković, Srđan; Glišić, Branislav

(Vojnomedicinska akademija - Institut za naučne informacije, Beograd, 2019)

TY  - JOUR
AU  - Majstorović, Nemanja
AU  - Živković, Srđan
AU  - Glišić, Branislav
PY  - 2019
UR  - https://smile.stomf.bg.ac.rs/handle/123456789/2441
AB  - Backrgound/Aim. Researchers in the field of dentistry have been conducting research into modelling and defining dental arches equitations. Nowadays, when 3D digital modelling is commonly utilized in dentistry, the approach to modelling, analysis and synthesis has changed. Clinical researches are related to aesthetic and functional analysis. The aim of this study was to increase repeatability and accuracy of defining and determining the coordinate system of the jaw as well as to defining mathematical criteria for monitoring and evaluating orthodontic treatment. Methods. In this study, we used the plaster models of the jaw, optical scanner with structured light, 3D digital models, computer aided design (CAD) engineering tools adjusting the coordinate system, spline fitting of 3rd, 4th, 5th, 6th, 7th and 8th degrees. Results. Splines of 3rd, 4th, 5th, 6th, 7th and 8th degrees were fitted from the initial state (K0) in all 10 successive controls (K1, K2, K3,…, K10). All splines were fitted through 12 points, from the right to the left side of the jaw: 6-5-4-3-2-1-1-2-3-4-5-6. Tabular and graphic presentations of the maximum and average deviation of dental arch fitting curves in successive controls were given. Conclusion. The parameters of the maximum and average errors of fitting curves converge the dental arch values that are lower than the accuracy of the used optical scanners. The average error of fitting provides a general picture of the entire dental arch at each stage of treatment. Maximum error fitting points at a specified tooth where the largest deviation.
AB  - Uvod/Cilj. Istraživači u oblasti stomatologije, posebno kliničari, već dugo se bave istraživanjima koja se odnose na modeliranje i definisanje oblika i parametara zubnog luka. Danas, kada je 3D digitalno modeliranje postalo uobičajena praksa u stomatologiji, promenio se i prilaz modeliranju, analizi i sintezi u ortodonciji. Klinička istraživanja oblika zubnog luka direktno se odnose na estetsku i funkcionalnu analizu zubnog niza (nivelacija, okluzija, zagrižaj). Cilj rada bio je da se poveća ponovljivost i preciznost definisanja i određivanja koordinatnog sistema vilice i definišu matematički kriterijumi za praćenje i ocenjivanje ortodontske terapije. Metode. U radu su koršćeni gipsani modeli vilice, optički skener sa strukturisanom svetlošću, 3D digitalni modeli vilice i Computer Aided Design (CAD) i inženjerski alati. Sprovedeno je podešavanje koordinatnog sistema i fitovanje splajnova trećeg, četvrtog, petog, šestog, sedmog i osmog stepena. Rezultati. Splajnovi (trećeg, četvrtog, petog, šestog, sedmog i osmog stepena) fitovani su u odnosu na početno stanje (K0), za svih 10 uzastopnih kolona (K1, K2, K3,... K10). Svi splajnovi su fitovani u 12 tačaka, sa leve i desne strane vilice: 6-5-4-3-2-1-1-2-3-4-5-6. Dat je tabelarni i grafički prikaz maksimalnih i prosečnih odstupanja fitovanih krivih linija dentalnog luka u sukcesivnim kontrolama. Zaključak. Parametri maksimalne i prosečne greške fitovanja krivih linija dentalnog luka konvergiraju vrednostima koje su manje od tačnosti korišćenih optičkih skenera. Prosečna greška fitovanja daje opštu sliku celokupnog dentalnog luka u svakoj od faza terapije. Maksimalna greška fitovanja ukazuje na tačno određeni zub gde su odstupanja najveća.
PB  - Vojnomedicinska akademija - Institut za naučne informacije, Beograd
T2  - Vojnosanitetski pregled
T1  - Dental arch monitoring by splines fitting error during orthodontic treatment using 3D digital models
T1  - Praćenje oblika zubnog luka odstupanjima fitovanih splajnova tokom ortodontske terapije primenom 3D digitalnih modela
VL  - 76
IS  - 3
SP  - 233
EP  - 240
DO  - 10.2298/VSP161212067M
ER  - 
@article{
author = "Majstorović, Nemanja and Živković, Srđan and Glišić, Branislav",
year = "2019",
abstract = "Backrgound/Aim. Researchers in the field of dentistry have been conducting research into modelling and defining dental arches equitations. Nowadays, when 3D digital modelling is commonly utilized in dentistry, the approach to modelling, analysis and synthesis has changed. Clinical researches are related to aesthetic and functional analysis. The aim of this study was to increase repeatability and accuracy of defining and determining the coordinate system of the jaw as well as to defining mathematical criteria for monitoring and evaluating orthodontic treatment. Methods. In this study, we used the plaster models of the jaw, optical scanner with structured light, 3D digital models, computer aided design (CAD) engineering tools adjusting the coordinate system, spline fitting of 3rd, 4th, 5th, 6th, 7th and 8th degrees. Results. Splines of 3rd, 4th, 5th, 6th, 7th and 8th degrees were fitted from the initial state (K0) in all 10 successive controls (K1, K2, K3,…, K10). All splines were fitted through 12 points, from the right to the left side of the jaw: 6-5-4-3-2-1-1-2-3-4-5-6. Tabular and graphic presentations of the maximum and average deviation of dental arch fitting curves in successive controls were given. Conclusion. The parameters of the maximum and average errors of fitting curves converge the dental arch values that are lower than the accuracy of the used optical scanners. The average error of fitting provides a general picture of the entire dental arch at each stage of treatment. Maximum error fitting points at a specified tooth where the largest deviation., Uvod/Cilj. Istraživači u oblasti stomatologije, posebno kliničari, već dugo se bave istraživanjima koja se odnose na modeliranje i definisanje oblika i parametara zubnog luka. Danas, kada je 3D digitalno modeliranje postalo uobičajena praksa u stomatologiji, promenio se i prilaz modeliranju, analizi i sintezi u ortodonciji. Klinička istraživanja oblika zubnog luka direktno se odnose na estetsku i funkcionalnu analizu zubnog niza (nivelacija, okluzija, zagrižaj). Cilj rada bio je da se poveća ponovljivost i preciznost definisanja i određivanja koordinatnog sistema vilice i definišu matematički kriterijumi za praćenje i ocenjivanje ortodontske terapije. Metode. U radu su koršćeni gipsani modeli vilice, optički skener sa strukturisanom svetlošću, 3D digitalni modeli vilice i Computer Aided Design (CAD) i inženjerski alati. Sprovedeno je podešavanje koordinatnog sistema i fitovanje splajnova trećeg, četvrtog, petog, šestog, sedmog i osmog stepena. Rezultati. Splajnovi (trećeg, četvrtog, petog, šestog, sedmog i osmog stepena) fitovani su u odnosu na početno stanje (K0), za svih 10 uzastopnih kolona (K1, K2, K3,... K10). Svi splajnovi su fitovani u 12 tačaka, sa leve i desne strane vilice: 6-5-4-3-2-1-1-2-3-4-5-6. Dat je tabelarni i grafički prikaz maksimalnih i prosečnih odstupanja fitovanih krivih linija dentalnog luka u sukcesivnim kontrolama. Zaključak. Parametri maksimalne i prosečne greške fitovanja krivih linija dentalnog luka konvergiraju vrednostima koje su manje od tačnosti korišćenih optičkih skenera. Prosečna greška fitovanja daje opštu sliku celokupnog dentalnog luka u svakoj od faza terapije. Maksimalna greška fitovanja ukazuje na tačno određeni zub gde su odstupanja najveća.",
publisher = "Vojnomedicinska akademija - Institut za naučne informacije, Beograd",
journal = "Vojnosanitetski pregled",
title = "Dental arch monitoring by splines fitting error during orthodontic treatment using 3D digital models, Praćenje oblika zubnog luka odstupanjima fitovanih splajnova tokom ortodontske terapije primenom 3D digitalnih modela",
volume = "76",
number = "3",
pages = "233-240",
doi = "10.2298/VSP161212067M"
}
Majstorović, N., Živković, S.,& Glišić, B.. (2019). Dental arch monitoring by splines fitting error during orthodontic treatment using 3D digital models. in Vojnosanitetski pregled
Vojnomedicinska akademija - Institut za naučne informacije, Beograd., 76(3), 233-240.
https://doi.org/10.2298/VSP161212067M
Majstorović N, Živković S, Glišić B. Dental arch monitoring by splines fitting error during orthodontic treatment using 3D digital models. in Vojnosanitetski pregled. 2019;76(3):233-240.
doi:10.2298/VSP161212067M .
Majstorović, Nemanja, Živković, Srđan, Glišić, Branislav, "Dental arch monitoring by splines fitting error during orthodontic treatment using 3D digital models" in Vojnosanitetski pregled, 76, no. 3 (2019):233-240,
https://doi.org/10.2298/VSP161212067M . .
5
3
6

New Improved Method of Setting the Jaw's Coordinate System

Živković, Srđan; Majstorović, Nemanja; Glišić, Branislav; Kramar, Davorin

(Springer-Verlag Berlin, Berlin, 2019)

TY  - CONF
AU  - Živković, Srđan
AU  - Majstorović, Nemanja
AU  - Glišić, Branislav
AU  - Kramar, Davorin
PY  - 2019
UR  - https://smile.stomf.bg.ac.rs/handle/123456789/2423
AB  - Precise and reproducible alignment of the coordinate system plays a key role in the processes of monitoring geometric parameters. In cases of long-term processes, which are executed in multiple phases, errors in setting the coordinate system can lead to wrong conclusions and mismanagement of these processes. Orthodontic therapy, ie teeth leveling, lasts for one year with controls every month. The geometric parameters (teeth positions) are monitored by the dental arch equations. During each control, the current state is compared with previous control. Conditio sine qua non is precisely and repeatably setting of the jaw's coordinate system. The ABO method (American Board of Orthodontics; digital model orientation) does not provide repeatability in successive controls. In this study, a new method of setting the coordinate system of the jaw is presented. To ensure as user-friendly procedure as possible a simple algorithm is listed. A case study on digital dental model analyses for dental arch curve mathematical definition is presented at the end of the study. This is an example of the application of engineering methods in non-engineering areas.
PB  - Springer-Verlag Berlin, Berlin
C3  - Proceedings of the 12th International Conference on Measurement & Quality Control - Cyber Physical
T1  - New Improved Method of Setting the Jaw's Coordinate System
SP  - 170
EP  - 184
DO  - 10.1007/978-3-030-18177-2_17
ER  - 
@conference{
author = "Živković, Srđan and Majstorović, Nemanja and Glišić, Branislav and Kramar, Davorin",
year = "2019",
abstract = "Precise and reproducible alignment of the coordinate system plays a key role in the processes of monitoring geometric parameters. In cases of long-term processes, which are executed in multiple phases, errors in setting the coordinate system can lead to wrong conclusions and mismanagement of these processes. Orthodontic therapy, ie teeth leveling, lasts for one year with controls every month. The geometric parameters (teeth positions) are monitored by the dental arch equations. During each control, the current state is compared with previous control. Conditio sine qua non is precisely and repeatably setting of the jaw's coordinate system. The ABO method (American Board of Orthodontics; digital model orientation) does not provide repeatability in successive controls. In this study, a new method of setting the coordinate system of the jaw is presented. To ensure as user-friendly procedure as possible a simple algorithm is listed. A case study on digital dental model analyses for dental arch curve mathematical definition is presented at the end of the study. This is an example of the application of engineering methods in non-engineering areas.",
publisher = "Springer-Verlag Berlin, Berlin",
journal = "Proceedings of the 12th International Conference on Measurement & Quality Control - Cyber Physical",
title = "New Improved Method of Setting the Jaw's Coordinate System",
pages = "170-184",
doi = "10.1007/978-3-030-18177-2_17"
}
Živković, S., Majstorović, N., Glišić, B.,& Kramar, D.. (2019). New Improved Method of Setting the Jaw's Coordinate System. in Proceedings of the 12th International Conference on Measurement & Quality Control - Cyber Physical
Springer-Verlag Berlin, Berlin., 170-184.
https://doi.org/10.1007/978-3-030-18177-2_17
Živković S, Majstorović N, Glišić B, Kramar D. New Improved Method of Setting the Jaw's Coordinate System. in Proceedings of the 12th International Conference on Measurement & Quality Control - Cyber Physical. 2019;:170-184.
doi:10.1007/978-3-030-18177-2_17 .
Živković, Srđan, Majstorović, Nemanja, Glišić, Branislav, Kramar, Davorin, "New Improved Method of Setting the Jaw's Coordinate System" in Proceedings of the 12th International Conference on Measurement & Quality Control - Cyber Physical (2019):170-184,
https://doi.org/10.1007/978-3-030-18177-2_17 . .
1
1

Monitoring and evaluation nivelation of tooth on 3D digital models

Majstorović, Nemanja

(Univerzitet u Beogradu, Stomatološki fakultet, 2018)

TY  - THES
AU  - Majstorović, Nemanja
PY  - 2018
UR  - http://eteze.bg.ac.rs/application/showtheses?thesesId=6519
UR  - https://fedorabg.bg.ac.rs/fedora/get/o:19274/bdef:Content/download
UR  - http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=50910991
UR  - http://nardus.mpn.gov.rs/123456789/10666
UR  - https://smile.stomf.bg.ac.rs/handle/123456789/1030
AB  - 3D modeling is a new technology applied in orthodontics. In this research, this technique was used to evaluate teeth nivelation. In order to do this, with the application of standard geometric modelers (CAD systems), for these investigations, reference geometric entities (RGEs) have been developed, as basic, derivative and anatomical. In this way, orthodontic parameters are defined, and in a new way they perform orthodontic analysis, in the case of a tooth nivelation. A set of 54 orthodontic parameters is defined, 28 for the lower jaw and 26 for the upper jaw. They are monitored in the space, in all three orthodontic levels, through the anatomical points of the teeth. The concept of e personal practice is defined, the developed model for monitoring the position of teeth in the space, the concept of modeling the dental arch using the spline in the occlusal plane was set up and the accuracy of the two scanners was explored. All this has been tested on a case of tooth nivelation. MATERIAL AND METHODS: In these studies, the basic sample covered 155 patients, Clinics for orthodontics, Faculty of Dentistry in Belgrade. The population that made this sample was between the ages from 15 to 26, both sexes. In all of them from the orthodontic point of view, the following problems have been reported: incorrect position of teeth, disturbances, different types of malooclusions, irregular shape of the dental arch. The leveling of the teeth (their position in the area, as well as in the occlusal plane) was observed, which belongs to the first phase of therapy with fixed devices. It includes the following: (i) Leveling of brackets, ie regulation of vertical deviations of individual teeth, (ii) Correction of rotated teeth, (iii) Correction of labio (bucco) lingual tooth deviations, and (iv) Tooth decay (upright). The scan was performed at: Next Engine (Faculty of Dentistry, Belgrade), Atos (Topomatika, Zagreb) and LazakSkan (Faculty of Mechanical Engineering, Ljubljana). The obtained 3D models were processed in the GOM Inspect V8 (V8 Hotfix 6, Rev. 81431) and the orthodontic analysis and synthesis were performed on Solid Works and Siemens PLM NX10 software. As an approach, the approach of generating a 3D digital model was used, and on it, through a concrete example, the definition, measurement and monitoring of RGE, used for orthodontic analysis and synthesis. These studies are based on the application of the following methods: analysis (orthodontic cases, states, parameters, trends, ...), synthesis (therapeutic methods, procedures and procedures, ...), induction (prediction of orthodontic trends for a set versus sample) and deduction (drawing conclusions about the orthodontic condition for each patient separately). Of course, as a basic process for these research, 3D modeling, as a scientific discipline that was first developed in engineering, and here will be applied in orthodontics...
AB  - 3D modeliranje je nova tehnologija primenjena u ortodonciji. U ovim istraţivanjima ova tehhnologija je primenjena za praćenje nivelacije zuba. Da bi se to ostvarilo, uz primenu standardnih geometrijskih modelera (CAD sistemi), za ova istraţivanja, su razvijeni referentni geometrijski entiteti (RGE), kao osnovni, izvedeni i anatomski. Na ovaj naĉin se definišu ortodontski parametri, a na novi naĉin vrše ortodontske analize, na primeru nivelacije zuba. Definisan je skup od 54 ortodontska parametra, 28 za donju vilicu i 26 za gornju vilicu. Oni se prate u prostoru, u sve tri ortodontske ravni, preko anatomskih taĉaka zuba. Definisan je konept e personalne ordinacije, razvijen model praćenja poloţaja zuba u prostoru, postavljen koncept modeliranja zubnog luka pomoću splajna u okluzalnoj ravni i istraţena taĉnost dva skenera. Sve ovo testirano je na primeru nivelacije zuba. MATERIJAL I METOD: U ovim istraţivanjima osnovni uzorak je obuhvatio 155 pacijenata, Klinike za ortopediju vilica Stomatološkog fakulteta u Beogradu. Populacija koja je saĉinjavla ovaj uzorak bila je starosti od 15 do 26. godina, oba pola. Kod svih njih sa ortodontske taĉke gledišta, javljali su se sledeći problemi: nepravilan poloţaj zuba, teskoba, malokluzija razliĉitog tipa, nepravilan oblik zubnog luka. Pratila se nivelacija zuba (njihov poloţaj u prostoru, kao i u okluzalnoj ravni), koja spada u prvu fazu terapije fiksnim aparatima. Ona obuhvata sledeće: (i) Nivelaciju bravica, odnosno regulisanje vertikalnih odstupanja pojedinih zuba, (ii) Korekcija rotiranih zuba, (iii) Korekcija labio(buko) lingvalnih odstupanja zuba, i (iv) Uspravljanje zuba. Skeniranje je vršeno na: Next Engine (Stomatološki fakultet, Beograd), Atos (Topomatika, Zagreb) i LazakSkan (Fakultet za strojništvo, Ljubljana). Dobijeni 3D modeli su obraĊeni u programu GOM Inspect V8 (V8 Hotfix 6, Rev. 81431), a ortodontske analize i sinteze su vršene na Solid Works i Siemens PLM NX10 softveru. Kao metod korišćen je prilaz generisanja 3D digitalnog modela, a na njemu, kroz konkretni primer, definisanje, merenje i praćenje RGE, koji su korišćeni za ortodontske analize i sinteze. Ova istraţivanja su zasnovana na primeni sledećih metoda: analiza (ortodontskih sluĉajeva, stanja, parametara, trendova, ...), sinteza (terapijskih metoda, procedura i postupaka, ...), indukcija (predviĊanje ortodontskih trendova za skup u odnosu na uzorak) i dedukcija (izvlaĉenje zakljuĉaka o ortodontskom stanju za svakog pacijenta posebno). Naravno, kao bazni postupak za ova istraţivanja korišćeno je 3D modeliranje, kao nauĉna disciplina koja je prvo razvijena u inţenjerstvu, a ovde će se primenjivati u ortodonciji...
PB  - Univerzitet u Beogradu, Stomatološki fakultet
T1  - Monitoring and evaluation nivelation of tooth on 3D digital models
T1  - Praćenje nivelacije zuba pomoću 3D digitalnih modela
UR  - https://hdl.handle.net/21.15107/rcub_nardus_10666
ER  - 
@phdthesis{
author = "Majstorović, Nemanja",
year = "2018",
abstract = "3D modeling is a new technology applied in orthodontics. In this research, this technique was used to evaluate teeth nivelation. In order to do this, with the application of standard geometric modelers (CAD systems), for these investigations, reference geometric entities (RGEs) have been developed, as basic, derivative and anatomical. In this way, orthodontic parameters are defined, and in a new way they perform orthodontic analysis, in the case of a tooth nivelation. A set of 54 orthodontic parameters is defined, 28 for the lower jaw and 26 for the upper jaw. They are monitored in the space, in all three orthodontic levels, through the anatomical points of the teeth. The concept of e personal practice is defined, the developed model for monitoring the position of teeth in the space, the concept of modeling the dental arch using the spline in the occlusal plane was set up and the accuracy of the two scanners was explored. All this has been tested on a case of tooth nivelation. MATERIAL AND METHODS: In these studies, the basic sample covered 155 patients, Clinics for orthodontics, Faculty of Dentistry in Belgrade. The population that made this sample was between the ages from 15 to 26, both sexes. In all of them from the orthodontic point of view, the following problems have been reported: incorrect position of teeth, disturbances, different types of malooclusions, irregular shape of the dental arch. The leveling of the teeth (their position in the area, as well as in the occlusal plane) was observed, which belongs to the first phase of therapy with fixed devices. It includes the following: (i) Leveling of brackets, ie regulation of vertical deviations of individual teeth, (ii) Correction of rotated teeth, (iii) Correction of labio (bucco) lingual tooth deviations, and (iv) Tooth decay (upright). The scan was performed at: Next Engine (Faculty of Dentistry, Belgrade), Atos (Topomatika, Zagreb) and LazakSkan (Faculty of Mechanical Engineering, Ljubljana). The obtained 3D models were processed in the GOM Inspect V8 (V8 Hotfix 6, Rev. 81431) and the orthodontic analysis and synthesis were performed on Solid Works and Siemens PLM NX10 software. As an approach, the approach of generating a 3D digital model was used, and on it, through a concrete example, the definition, measurement and monitoring of RGE, used for orthodontic analysis and synthesis. These studies are based on the application of the following methods: analysis (orthodontic cases, states, parameters, trends, ...), synthesis (therapeutic methods, procedures and procedures, ...), induction (prediction of orthodontic trends for a set versus sample) and deduction (drawing conclusions about the orthodontic condition for each patient separately). Of course, as a basic process for these research, 3D modeling, as a scientific discipline that was first developed in engineering, and here will be applied in orthodontics..., 3D modeliranje je nova tehnologija primenjena u ortodonciji. U ovim istraţivanjima ova tehhnologija je primenjena za praćenje nivelacije zuba. Da bi se to ostvarilo, uz primenu standardnih geometrijskih modelera (CAD sistemi), za ova istraţivanja, su razvijeni referentni geometrijski entiteti (RGE), kao osnovni, izvedeni i anatomski. Na ovaj naĉin se definišu ortodontski parametri, a na novi naĉin vrše ortodontske analize, na primeru nivelacije zuba. Definisan je skup od 54 ortodontska parametra, 28 za donju vilicu i 26 za gornju vilicu. Oni se prate u prostoru, u sve tri ortodontske ravni, preko anatomskih taĉaka zuba. Definisan je konept e personalne ordinacije, razvijen model praćenja poloţaja zuba u prostoru, postavljen koncept modeliranja zubnog luka pomoću splajna u okluzalnoj ravni i istraţena taĉnost dva skenera. Sve ovo testirano je na primeru nivelacije zuba. MATERIJAL I METOD: U ovim istraţivanjima osnovni uzorak je obuhvatio 155 pacijenata, Klinike za ortopediju vilica Stomatološkog fakulteta u Beogradu. Populacija koja je saĉinjavla ovaj uzorak bila je starosti od 15 do 26. godina, oba pola. Kod svih njih sa ortodontske taĉke gledišta, javljali su se sledeći problemi: nepravilan poloţaj zuba, teskoba, malokluzija razliĉitog tipa, nepravilan oblik zubnog luka. Pratila se nivelacija zuba (njihov poloţaj u prostoru, kao i u okluzalnoj ravni), koja spada u prvu fazu terapije fiksnim aparatima. Ona obuhvata sledeće: (i) Nivelaciju bravica, odnosno regulisanje vertikalnih odstupanja pojedinih zuba, (ii) Korekcija rotiranih zuba, (iii) Korekcija labio(buko) lingvalnih odstupanja zuba, i (iv) Uspravljanje zuba. Skeniranje je vršeno na: Next Engine (Stomatološki fakultet, Beograd), Atos (Topomatika, Zagreb) i LazakSkan (Fakultet za strojništvo, Ljubljana). Dobijeni 3D modeli su obraĊeni u programu GOM Inspect V8 (V8 Hotfix 6, Rev. 81431), a ortodontske analize i sinteze su vršene na Solid Works i Siemens PLM NX10 softveru. Kao metod korišćen je prilaz generisanja 3D digitalnog modela, a na njemu, kroz konkretni primer, definisanje, merenje i praćenje RGE, koji su korišćeni za ortodontske analize i sinteze. Ova istraţivanja su zasnovana na primeni sledećih metoda: analiza (ortodontskih sluĉajeva, stanja, parametara, trendova, ...), sinteza (terapijskih metoda, procedura i postupaka, ...), indukcija (predviĊanje ortodontskih trendova za skup u odnosu na uzorak) i dedukcija (izvlaĉenje zakljuĉaka o ortodontskom stanju za svakog pacijenta posebno). Naravno, kao bazni postupak za ova istraţivanja korišćeno je 3D modeliranje, kao nauĉna disciplina koja je prvo razvijena u inţenjerstvu, a ovde će se primenjivati u ortodonciji...",
publisher = "Univerzitet u Beogradu, Stomatološki fakultet",
title = "Monitoring and evaluation nivelation of tooth on 3D digital models, Praćenje nivelacije zuba pomoću 3D digitalnih modela",
url = "https://hdl.handle.net/21.15107/rcub_nardus_10666"
}
Majstorović, N.. (2018). Monitoring and evaluation nivelation of tooth on 3D digital models. 
Univerzitet u Beogradu, Stomatološki fakultet..
https://hdl.handle.net/21.15107/rcub_nardus_10666
Majstorović N. Monitoring and evaluation nivelation of tooth on 3D digital models. 2018;.
https://hdl.handle.net/21.15107/rcub_nardus_10666 .
Majstorović, Nemanja, "Monitoring and evaluation nivelation of tooth on 3D digital models" (2018),
https://hdl.handle.net/21.15107/rcub_nardus_10666 .

The advanced model definition and analysis of orthodontic parameters on 3D digital models

Majstorović, Nemanja; Živković, Srđan; Glišić, Branislav

(Srpsko lekarsko društvo, Beograd, 2017)

TY  - JOUR
AU  - Majstorović, Nemanja
AU  - Živković, Srđan
AU  - Glišić, Branislav
PY  - 2017
UR  - https://smile.stomf.bg.ac.rs/handle/123456789/2267
AB  - Introduction/Objective Digital 3D modeling is slowly becoming an everyday orthodontic practice, and after two decades of research and development it is a basic element of e-orthodontics. The aim of this study was development and use of geometric entities on 3D digital models for diagnosing, planning and monitoring of orthodontic therapy, by using CAD (computer aided design) systems. Methods Statistical analysis and synthesis of 54 orthodontic parameters (28 in the upper and 26 in the lower jaw), defining three hypotheses and their testing, the application of the t-test. Results All three hypotheses are confirmed, convenience of using geometric entities, higher accuracy of 3D digital models, and more substantial displacement of teeth in the first six months of therapy (Student's t-test). After the first six months, distances in the x-y plane (occlusal plane) were bigger in both the upper and the lower jaw; additionally, the distances in the y-z plane (medial plane) decreased on the left and right side, so we can say that the first phase of therapy had success and that both jaws are wider. At the next four controls, parameters showed slight progress that was not statistically significant. Overall, after 11 months of therapy, there was a considerable improvement in the x-y plane, while changes in distances of clinical crown heights were very small. This could be explained by the fact that, during therapy, by using different arches, upper molars were pushed inside, toward the palate. Analyzing 3D computer models, we could notice that in this plane displacement of the upper left first molar was larger. Conclusion The use of geometric entities for defining orthodontic parameters gives us new possibilities for accurate and reliable analysis of patient's orthodontic condition.
AB  - Uvod/Cilj 3D modeliranje postaje sve više svakodnevna ortodontska praksa, koja posle dve decenije istraživanja i razvoja biva bazni element e-ortodoncije. Cilj rada je bio da se izvrši razvoj i pokaže primena geometrijskih entiteta (GE) na 3D modelima za dijagnozu, planiranje i praćenje ortodontske terapije primenom opštih kompjuterski dizajniranih sistema. Metode Statistička analiza i sinteza 54 ortodontska parametra (28 za gornju vilicu i 26 za donju vilicu), definisanje tri hipoteze i njihovo testiranje, primena t-testa. Rezultati Potvrđene su sve tri hipoteze: pogodnost za primenu GE, veća tačnost 3D modela i veće pomeranje zuba u prvih šest meseci terapije (t-test). Posle prvih šest meseci uočeno je da su vrednosti rastojanja u x-y ravni (okluzalna ravan) u gornjoj i donjoj vilici veće, a da je pored toga došlo do smanjenja rastojanja u y-z ravni (medijalna ravan) i sa leve i sa desne strane, što znači da je prva faza terapije uspešno okončana i da je došlo do proširenja obe vilice u širini. U naredne četiri kontrole parametri su uglavnom pokazivali blagi rast, koji nije bio statistički toliko značajan. Sveukupno kad se sagleda, nakon jedanaest meseci terapije vidljiv je napredak u x-y ravni, dok su najmanja pomeranja viđena kod kliničkih visina krunica zuba. Ovo se objašnjava činjenicom da su tokom terapije, primenom određenih lukova, gornji molari uvučeni unutra, tj. pomereni prema nepcu. Analizom 3D digitalnih modela moguće je uočiti da je nastalo veće pomeranje kod gornjeg levog molara u ovoj ravni. Zaključak Primena GE za definisanje ortodontskih parametara daje nove mogućnosti za tačnu i pouzdanu analizu ortodontskog stanja pacijenta.
PB  - Srpsko lekarsko društvo, Beograd
T2  - Srpski arhiv za celokupno lekarstvo
T1  - The advanced model definition and analysis of orthodontic parameters on 3D digital models
T1  - Novi model za definisanje i analizu ortodontskih parametara na 3D digitalnim modelima
VL  - 145
IS  - 1-2
SP  - 49
EP  - 57
DO  - 10.2298/SARH151207011M
ER  - 
@article{
author = "Majstorović, Nemanja and Živković, Srđan and Glišić, Branislav",
year = "2017",
abstract = "Introduction/Objective Digital 3D modeling is slowly becoming an everyday orthodontic practice, and after two decades of research and development it is a basic element of e-orthodontics. The aim of this study was development and use of geometric entities on 3D digital models for diagnosing, planning and monitoring of orthodontic therapy, by using CAD (computer aided design) systems. Methods Statistical analysis and synthesis of 54 orthodontic parameters (28 in the upper and 26 in the lower jaw), defining three hypotheses and their testing, the application of the t-test. Results All three hypotheses are confirmed, convenience of using geometric entities, higher accuracy of 3D digital models, and more substantial displacement of teeth in the first six months of therapy (Student's t-test). After the first six months, distances in the x-y plane (occlusal plane) were bigger in both the upper and the lower jaw; additionally, the distances in the y-z plane (medial plane) decreased on the left and right side, so we can say that the first phase of therapy had success and that both jaws are wider. At the next four controls, parameters showed slight progress that was not statistically significant. Overall, after 11 months of therapy, there was a considerable improvement in the x-y plane, while changes in distances of clinical crown heights were very small. This could be explained by the fact that, during therapy, by using different arches, upper molars were pushed inside, toward the palate. Analyzing 3D computer models, we could notice that in this plane displacement of the upper left first molar was larger. Conclusion The use of geometric entities for defining orthodontic parameters gives us new possibilities for accurate and reliable analysis of patient's orthodontic condition., Uvod/Cilj 3D modeliranje postaje sve više svakodnevna ortodontska praksa, koja posle dve decenije istraživanja i razvoja biva bazni element e-ortodoncije. Cilj rada je bio da se izvrši razvoj i pokaže primena geometrijskih entiteta (GE) na 3D modelima za dijagnozu, planiranje i praćenje ortodontske terapije primenom opštih kompjuterski dizajniranih sistema. Metode Statistička analiza i sinteza 54 ortodontska parametra (28 za gornju vilicu i 26 za donju vilicu), definisanje tri hipoteze i njihovo testiranje, primena t-testa. Rezultati Potvrđene su sve tri hipoteze: pogodnost za primenu GE, veća tačnost 3D modela i veće pomeranje zuba u prvih šest meseci terapije (t-test). Posle prvih šest meseci uočeno je da su vrednosti rastojanja u x-y ravni (okluzalna ravan) u gornjoj i donjoj vilici veće, a da je pored toga došlo do smanjenja rastojanja u y-z ravni (medijalna ravan) i sa leve i sa desne strane, što znači da je prva faza terapije uspešno okončana i da je došlo do proširenja obe vilice u širini. U naredne četiri kontrole parametri su uglavnom pokazivali blagi rast, koji nije bio statistički toliko značajan. Sveukupno kad se sagleda, nakon jedanaest meseci terapije vidljiv je napredak u x-y ravni, dok su najmanja pomeranja viđena kod kliničkih visina krunica zuba. Ovo se objašnjava činjenicom da su tokom terapije, primenom određenih lukova, gornji molari uvučeni unutra, tj. pomereni prema nepcu. Analizom 3D digitalnih modela moguće je uočiti da je nastalo veće pomeranje kod gornjeg levog molara u ovoj ravni. Zaključak Primena GE za definisanje ortodontskih parametara daje nove mogućnosti za tačnu i pouzdanu analizu ortodontskog stanja pacijenta.",
publisher = "Srpsko lekarsko društvo, Beograd",
journal = "Srpski arhiv za celokupno lekarstvo",
title = "The advanced model definition and analysis of orthodontic parameters on 3D digital models, Novi model za definisanje i analizu ortodontskih parametara na 3D digitalnim modelima",
volume = "145",
number = "1-2",
pages = "49-57",
doi = "10.2298/SARH151207011M"
}
Majstorović, N., Živković, S.,& Glišić, B.. (2017). The advanced model definition and analysis of orthodontic parameters on 3D digital models. in Srpski arhiv za celokupno lekarstvo
Srpsko lekarsko društvo, Beograd., 145(1-2), 49-57.
https://doi.org/10.2298/SARH151207011M
Majstorović N, Živković S, Glišić B. The advanced model definition and analysis of orthodontic parameters on 3D digital models. in Srpski arhiv za celokupno lekarstvo. 2017;145(1-2):49-57.
doi:10.2298/SARH151207011M .
Majstorović, Nemanja, Živković, Srđan, Glišić, Branislav, "The advanced model definition and analysis of orthodontic parameters on 3D digital models" in Srpski arhiv za celokupno lekarstvo, 145, no. 1-2 (2017):49-57,
https://doi.org/10.2298/SARH151207011M . .
4
3
6

Examination of scanner precision by analysing orthodontic parameters

Majstorović, Nemanja; Čerče, Luka; Kramar, Davorin; Soković, Mirko; Glišić, Branislav; Majstorović, Vidosav; Živković, Srđan

(Udruženje stomatologa Balkana, 2017)

TY  - JOUR
AU  - Majstorović, Nemanja
AU  - Čerče, Luka
AU  - Kramar, Davorin
AU  - Soković, Mirko
AU  - Glišić, Branislav
AU  - Majstorović, Vidosav
AU  - Živković, Srđan
PY  - 2017
UR  - https://smile.stomf.bg.ac.rs/handle/123456789/2244
AB  - Background: 3D modelling in orthodontics is becoming an increasingly widespread technique in practice. One of the significant questions already being asked is related to determining the precision of the scanner used for generating surfaces on a 3D model of the jaw. Materials and methods: This research was conducted by generating a set of identical 3D models on Atos optical 3D scanner and Lazak Scan laboratory scanner, which precision was established by measuring a set of orthodontic parameters (54 overall) in all three orthodontic planes. In this manner we explored their precision in space, since they are used for generating spatial models - 3D jaws. Results: There were significant differences between parameters scanned with Atos and Lazak Scan. The smallest difference was 0.017 mm, and the biggest 1.109 mm. Conclusion: This research reveals that both scanners (Atos and Lazak Scan), which belong to general purpose scanners, based on precision parameters can be used in orthodontics. Early analyses indicate that the reference scanner in terms of precision is Atos.
PB  - Udruženje stomatologa Balkana
T2  - Balkan Journal of Dental Medicine
T1  - Examination of scanner precision by analysing orthodontic parameters
VL  - 21
IS  - 1
SP  - 32
EP  - 43
DO  - 10.1515/bjdm-2017-0005
ER  - 
@article{
author = "Majstorović, Nemanja and Čerče, Luka and Kramar, Davorin and Soković, Mirko and Glišić, Branislav and Majstorović, Vidosav and Živković, Srđan",
year = "2017",
abstract = "Background: 3D modelling in orthodontics is becoming an increasingly widespread technique in practice. One of the significant questions already being asked is related to determining the precision of the scanner used for generating surfaces on a 3D model of the jaw. Materials and methods: This research was conducted by generating a set of identical 3D models on Atos optical 3D scanner and Lazak Scan laboratory scanner, which precision was established by measuring a set of orthodontic parameters (54 overall) in all three orthodontic planes. In this manner we explored their precision in space, since they are used for generating spatial models - 3D jaws. Results: There were significant differences between parameters scanned with Atos and Lazak Scan. The smallest difference was 0.017 mm, and the biggest 1.109 mm. Conclusion: This research reveals that both scanners (Atos and Lazak Scan), which belong to general purpose scanners, based on precision parameters can be used in orthodontics. Early analyses indicate that the reference scanner in terms of precision is Atos.",
publisher = "Udruženje stomatologa Balkana",
journal = "Balkan Journal of Dental Medicine",
title = "Examination of scanner precision by analysing orthodontic parameters",
volume = "21",
number = "1",
pages = "32-43",
doi = "10.1515/bjdm-2017-0005"
}
Majstorović, N., Čerče, L., Kramar, D., Soković, M., Glišić, B., Majstorović, V.,& Živković, S.. (2017). Examination of scanner precision by analysing orthodontic parameters. in Balkan Journal of Dental Medicine
Udruženje stomatologa Balkana., 21(1), 32-43.
https://doi.org/10.1515/bjdm-2017-0005
Majstorović N, Čerče L, Kramar D, Soković M, Glišić B, Majstorović V, Živković S. Examination of scanner precision by analysing orthodontic parameters. in Balkan Journal of Dental Medicine. 2017;21(1):32-43.
doi:10.1515/bjdm-2017-0005 .
Majstorović, Nemanja, Čerče, Luka, Kramar, Davorin, Soković, Mirko, Glišić, Branislav, Majstorović, Vidosav, Živković, Srđan, "Examination of scanner precision by analysing orthodontic parameters" in Balkan Journal of Dental Medicine, 21, no. 1 (2017):32-43,
https://doi.org/10.1515/bjdm-2017-0005 . .
2

Referent geometric entities in orthodontics on 3D models

Majstorović, Nemanja; Mačužić, Jelena; Glišić, Branislav

(Srpsko lekarsko društvo - Stomatološka sekcija, Beograd, 2014)

TY  - JOUR
AU  - Majstorović, Nemanja
AU  - Mačužić, Jelena
AU  - Glišić, Branislav
PY  - 2014
UR  - https://smile.stomf.bg.ac.rs/handle/123456789/1855
AB  - 3D modeling is often used in orthodontics. Most commonly used software today is problem- oriented CAD system (OrthoCAD and others), as well as general CAD software for engineering modeling. Both methods require definition and use of various geometric entities to describe and monitor orthodontic status, but still there have been more than one approach to definition of geometric entities that characterize orthodontic parameters. The aim of this study was to define the referent geometric entities (RGE) on 3D models, perform their classification and provide examples of their application. For defining and monitoring orthodontic parameters the following RGE groups are used: (a) basic geometric entities (point, line, straight line, plane, curve, curved surface); (b) derived geometric entities (coordinate origin, coordinate system, coordinate plane, axis, edge, perspective); and (c) anatomical geometric entities (surfaces, points). In this study, using 11 examples is shown how orthodontic parameters can be modeled over three classification groups RGE. Presented analysis and RGE examples indicate that RGE give interdisciplinary and systematic approach to computer modeling in orthodontics, and create a basis for development and implementation of methods of anatomical features in orthodontics which can be used to set up an integrated orthodontic parameter.
AB  - Trodimenzionalno (3D) modeliranje u ortodonciji nalazi sve veću primenu. Danas se za ove namene koriste problemski orijentisani sistemi CAD (OrthoCAD i drugi), kao i opšti softveri CAD za inženjerska modeliranja. Oba načina zahtevaju definisanje i korišćenje različitih geometrijskih entiteta pomoću kojih se opisuju i prate ortodontska stanja, ali još nema jednoznačnog prilaza definisanju geometrijskih entiteta, odnosno definisanju ortodontskih parametara. Cilj ovog rada je bio da se definišu i klasifikuju referentni geometrijski entiteti (RGE) na 3D modelima, te navedu konkretni primeri primene. U ortodonciji se, radi definisanja i praćenja ortodontskih parametara, koriste sledeće grupe RGE: a) osnovni geometrijski entiteti (tačka, prava, duž, ravan, kriva linija, kriva površina); b) izvedeni geometrijski entiteti (koordinatni početak, koordinatni sistem, koordinatne ravni, osa, ivica, perspektiva); i c) anatomski geometrijski entiteti (površine, tačke). U radu je kroz 11 primera prikazano kako se preko tri klasifikacione grupe RGE mogu modelirati ortodontski parametri. Prikazana analiza i primeri RGE pokazuju da je RGE sistematičan i interdisciplinarni pristup kompjuterskom modeliranju u ortodonciji, odnosno da stvara osnove za definisanje i primenu metoda anatomskih odlika u ortodonciji, pomoću kojih se može postaviti integrisani ortodontski parametar.
PB  - Srpsko lekarsko društvo - Stomatološka sekcija, Beograd
T2  - Stomatološki glasnik Srbije
T1  - Referent geometric entities in orthodontics on 3D models
T1  - Referentni geometrijski entiteti u ortodonciji na trodimenzionalnim modelima
VL  - 61
IS  - 2
SP  - 102
EP  - 112
DO  - 10.2298/sgs1402102m
ER  - 
@article{
author = "Majstorović, Nemanja and Mačužić, Jelena and Glišić, Branislav",
year = "2014",
abstract = "3D modeling is often used in orthodontics. Most commonly used software today is problem- oriented CAD system (OrthoCAD and others), as well as general CAD software for engineering modeling. Both methods require definition and use of various geometric entities to describe and monitor orthodontic status, but still there have been more than one approach to definition of geometric entities that characterize orthodontic parameters. The aim of this study was to define the referent geometric entities (RGE) on 3D models, perform their classification and provide examples of their application. For defining and monitoring orthodontic parameters the following RGE groups are used: (a) basic geometric entities (point, line, straight line, plane, curve, curved surface); (b) derived geometric entities (coordinate origin, coordinate system, coordinate plane, axis, edge, perspective); and (c) anatomical geometric entities (surfaces, points). In this study, using 11 examples is shown how orthodontic parameters can be modeled over three classification groups RGE. Presented analysis and RGE examples indicate that RGE give interdisciplinary and systematic approach to computer modeling in orthodontics, and create a basis for development and implementation of methods of anatomical features in orthodontics which can be used to set up an integrated orthodontic parameter., Trodimenzionalno (3D) modeliranje u ortodonciji nalazi sve veću primenu. Danas se za ove namene koriste problemski orijentisani sistemi CAD (OrthoCAD i drugi), kao i opšti softveri CAD za inženjerska modeliranja. Oba načina zahtevaju definisanje i korišćenje različitih geometrijskih entiteta pomoću kojih se opisuju i prate ortodontska stanja, ali još nema jednoznačnog prilaza definisanju geometrijskih entiteta, odnosno definisanju ortodontskih parametara. Cilj ovog rada je bio da se definišu i klasifikuju referentni geometrijski entiteti (RGE) na 3D modelima, te navedu konkretni primeri primene. U ortodonciji se, radi definisanja i praćenja ortodontskih parametara, koriste sledeće grupe RGE: a) osnovni geometrijski entiteti (tačka, prava, duž, ravan, kriva linija, kriva površina); b) izvedeni geometrijski entiteti (koordinatni početak, koordinatni sistem, koordinatne ravni, osa, ivica, perspektiva); i c) anatomski geometrijski entiteti (površine, tačke). U radu je kroz 11 primera prikazano kako se preko tri klasifikacione grupe RGE mogu modelirati ortodontski parametri. Prikazana analiza i primeri RGE pokazuju da je RGE sistematičan i interdisciplinarni pristup kompjuterskom modeliranju u ortodonciji, odnosno da stvara osnove za definisanje i primenu metoda anatomskih odlika u ortodonciji, pomoću kojih se može postaviti integrisani ortodontski parametar.",
publisher = "Srpsko lekarsko društvo - Stomatološka sekcija, Beograd",
journal = "Stomatološki glasnik Srbije",
title = "Referent geometric entities in orthodontics on 3D models, Referentni geometrijski entiteti u ortodonciji na trodimenzionalnim modelima",
volume = "61",
number = "2",
pages = "102-112",
doi = "10.2298/sgs1402102m"
}
Majstorović, N., Mačužić, J.,& Glišić, B.. (2014). Referent geometric entities in orthodontics on 3D models. in Stomatološki glasnik Srbije
Srpsko lekarsko društvo - Stomatološka sekcija, Beograd., 61(2), 102-112.
https://doi.org/10.2298/sgs1402102m
Majstorović N, Mačužić J, Glišić B. Referent geometric entities in orthodontics on 3D models. in Stomatološki glasnik Srbije. 2014;61(2):102-112.
doi:10.2298/sgs1402102m .
Majstorović, Nemanja, Mačužić, Jelena, Glišić, Branislav, "Referent geometric entities in orthodontics on 3D models" in Stomatološki glasnik Srbije, 61, no. 2 (2014):102-112,
https://doi.org/10.2298/sgs1402102m . .
3