Mićić, Milutin

Link to this page

Authority KeyName Variants
a30e48d5-0def-48a8-a2be-53857d818411
  • Mićić, Milutin (2)
Projects

Author's Bibliography

Testing of Different Scanning Protocols Used for Precise 3D-printing of Mandibular Models

Mićić, Milutin; Jadžić, Jelena; Milenković, Petar; Antić, Svetlana; Antonijević, Đorđe; Đurić, Marija

(Wolters Kluwer Health, 2023)

TY  - JOUR
AU  - Mićić, Milutin
AU  - Jadžić, Jelena
AU  - Milenković, Petar
AU  - Antić, Svetlana
AU  - Antonijević, Đorđe
AU  - Đurić, Marija
PY  - 2023
UR  - https://smile.stomf.bg.ac.rs/handle/123456789/3288
AB  - Multidetector computed tomography (MDCT) is often necessary to manufacture 3D-printed medical models (MMs) required for mandibular restoration due to trauma or malignant tumor. Although cone-beam computed tomography (CBCT) is a preferable method of mandibular imaging, additional scanning is often unjustified. To test whether a single radiologic protocol could be used for mandibular reconstructions, the human mandible was scanned with 6 MDCT and 2 CBCT protocols and later 3D-printed using a fused-deposition modelling technique. Then, we assessed linear measures on the mandible and compared them with MDCT/CBCT digital scans and 3D-printed MMs. Our data revealed that CBCT0.25 was the most precise protocol for manufacturing 3D-printed mandibular MMs, which is expected considering its voxel size. However, we noted that CBCT0.35 and Dental2.0H60s MDCT protocols were of comparable accuracy, indicating that this MDCT protocol could be a single radiologic protocol used to scan both donor and recipient regions required for mandibular reconstruction.
PB  - Wolters Kluwer Health
T2  - Journal of Craniofacial Surgery
T1  - Testing of Different Scanning Protocols Used for Precise 3D-printing of Mandibular Models
VL  - 34
IS  - 7
SP  - e623
EP  - e626
DO  - 10.1097/scs.0000000000009421
ER  - 
@article{
author = "Mićić, Milutin and Jadžić, Jelena and Milenković, Petar and Antić, Svetlana and Antonijević, Đorđe and Đurić, Marija",
year = "2023",
abstract = "Multidetector computed tomography (MDCT) is often necessary to manufacture 3D-printed medical models (MMs) required for mandibular restoration due to trauma or malignant tumor. Although cone-beam computed tomography (CBCT) is a preferable method of mandibular imaging, additional scanning is often unjustified. To test whether a single radiologic protocol could be used for mandibular reconstructions, the human mandible was scanned with 6 MDCT and 2 CBCT protocols and later 3D-printed using a fused-deposition modelling technique. Then, we assessed linear measures on the mandible and compared them with MDCT/CBCT digital scans and 3D-printed MMs. Our data revealed that CBCT0.25 was the most precise protocol for manufacturing 3D-printed mandibular MMs, which is expected considering its voxel size. However, we noted that CBCT0.35 and Dental2.0H60s MDCT protocols were of comparable accuracy, indicating that this MDCT protocol could be a single radiologic protocol used to scan both donor and recipient regions required for mandibular reconstruction.",
publisher = "Wolters Kluwer Health",
journal = "Journal of Craniofacial Surgery",
title = "Testing of Different Scanning Protocols Used for Precise 3D-printing of Mandibular Models",
volume = "34",
number = "7",
pages = "e623-e626",
doi = "10.1097/scs.0000000000009421"
}
Mićić, M., Jadžić, J., Milenković, P., Antić, S., Antonijević, Đ.,& Đurić, M.. (2023). Testing of Different Scanning Protocols Used for Precise 3D-printing of Mandibular Models. in Journal of Craniofacial Surgery
Wolters Kluwer Health., 34(7), e623-e626.
https://doi.org/10.1097/scs.0000000000009421
Mićić M, Jadžić J, Milenković P, Antić S, Antonijević Đ, Đurić M. Testing of Different Scanning Protocols Used for Precise 3D-printing of Mandibular Models. in Journal of Craniofacial Surgery. 2023;34(7):e623-e626.
doi:10.1097/scs.0000000000009421 .
Mićić, Milutin, Jadžić, Jelena, Milenković, Petar, Antić, Svetlana, Antonijević, Đorđe, Đurić, Marija, "Testing of Different Scanning Protocols Used for Precise 3D-printing of Mandibular Models" in Journal of Craniofacial Surgery, 34, no. 7 (2023):e623-e626,
https://doi.org/10.1097/scs.0000000000009421 . .

Various methods of 3D and bio-printing

Jokanović, Vukoman; Čolović, Božana; Antonijević, Đorđe; Mićić, Milutin; Živković, Slavoljub

(Srpsko lekarsko društvo - Stomatološka sekcija, Beograd, 2017)

TY  - JOUR
AU  - Jokanović, Vukoman
AU  - Čolović, Božana
AU  - Antonijević, Đorđe
AU  - Mićić, Milutin
AU  - Živković, Slavoljub
PY  - 2017
UR  - https://smile.stomf.bg.ac.rs/handle/123456789/2242
AB  - There is growing need for synthetic tissue replacement materials designed in a way that mimic complex structure of tissues and organs. Among various methods for fabrication of implants (scaffolds), 3D printing is very powerful technique because it enables creation of scaffolds with complex internal structures and high resolution, based on medical data sets. This method allows fabrication of scaffolds with desired macro- and micro-porosity and fully inter- connected pore network. Rapid development of 3D printing technologies has enabled various applications from the creation of anatomical training models for complex surgical procedures to the printing of tissue engineering constructs. The aim of current investigations was to develop compatible printers and materials (bioinks) to obtain biomimetic scaffolds, which allow printing of living cells without significant loss of cell viability. The advanced level of such printing assumes “in situ” printing, i.e. printing cells and biomaterials directly onto or in a patient that will reduce recovery time.
AB  - Danas postoji sve veća potreba za sintetičkim materijalima za zamenu tkiva dizajniranih na način koji imitira složenu strukturu tkiva i organa. Među različitim metodama proizvodnje implantata (skafolda), 3D štampanje je veoma moćna tehnika jer omogućava kreiranje skafolda sa složenim unutrašnjim strukturama i visokom rezolucijom, zasnovanim na medicinskim skupovima podataka. Ova metoda omogućava proizvodnju skafolda sa željenom makroporoznošću i mikroporoznošću i potpuno povezanom mrežom pora. Brzi razvoj tehnologija 3D štampanja omogućio je različite primene – od kreiranja anatomskih modela za uvežbavanje složenih hirurških procedura do štampanja konstrukata za tkivno inženjerstvo. Cilj tekućih istraživanja je razvoj kompatibilnih štampača i materijala (bio-mastila) za dobijanje biomimičnih skafolda, koji omogućavaju štampanje živih ćelija bez značajnog gubitka njihove vijabilnosti. Napredni nivo takvog štampanja pretpostavlja štampanje in situ, tj. štampanje ćelija i biomaterijala direktno na pacijentu ili u pacijenta, što će smanjiti vreme oporavka.
PB  - Srpsko lekarsko društvo - Stomatološka sekcija, Beograd
T2  - Stomatološki glasnik Srbije
T1  - Various methods of 3D and bio-printing
T1  - Različite metode 3D štampanja i bio-štampanja
VL  - 64
IS  - 3
SP  - 136
EP  - 145
DO  - 10.1515/sdj-2017-0014
ER  - 
@article{
author = "Jokanović, Vukoman and Čolović, Božana and Antonijević, Đorđe and Mićić, Milutin and Živković, Slavoljub",
year = "2017",
abstract = "There is growing need for synthetic tissue replacement materials designed in a way that mimic complex structure of tissues and organs. Among various methods for fabrication of implants (scaffolds), 3D printing is very powerful technique because it enables creation of scaffolds with complex internal structures and high resolution, based on medical data sets. This method allows fabrication of scaffolds with desired macro- and micro-porosity and fully inter- connected pore network. Rapid development of 3D printing technologies has enabled various applications from the creation of anatomical training models for complex surgical procedures to the printing of tissue engineering constructs. The aim of current investigations was to develop compatible printers and materials (bioinks) to obtain biomimetic scaffolds, which allow printing of living cells without significant loss of cell viability. The advanced level of such printing assumes “in situ” printing, i.e. printing cells and biomaterials directly onto or in a patient that will reduce recovery time., Danas postoji sve veća potreba za sintetičkim materijalima za zamenu tkiva dizajniranih na način koji imitira složenu strukturu tkiva i organa. Među različitim metodama proizvodnje implantata (skafolda), 3D štampanje je veoma moćna tehnika jer omogućava kreiranje skafolda sa složenim unutrašnjim strukturama i visokom rezolucijom, zasnovanim na medicinskim skupovima podataka. Ova metoda omogućava proizvodnju skafolda sa željenom makroporoznošću i mikroporoznošću i potpuno povezanom mrežom pora. Brzi razvoj tehnologija 3D štampanja omogućio je različite primene – od kreiranja anatomskih modela za uvežbavanje složenih hirurških procedura do štampanja konstrukata za tkivno inženjerstvo. Cilj tekućih istraživanja je razvoj kompatibilnih štampača i materijala (bio-mastila) za dobijanje biomimičnih skafolda, koji omogućavaju štampanje živih ćelija bez značajnog gubitka njihove vijabilnosti. Napredni nivo takvog štampanja pretpostavlja štampanje in situ, tj. štampanje ćelija i biomaterijala direktno na pacijentu ili u pacijenta, što će smanjiti vreme oporavka.",
publisher = "Srpsko lekarsko društvo - Stomatološka sekcija, Beograd",
journal = "Stomatološki glasnik Srbije",
title = "Various methods of 3D and bio-printing, Različite metode 3D štampanja i bio-štampanja",
volume = "64",
number = "3",
pages = "136-145",
doi = "10.1515/sdj-2017-0014"
}
Jokanović, V., Čolović, B., Antonijević, Đ., Mićić, M.,& Živković, S.. (2017). Various methods of 3D and bio-printing. in Stomatološki glasnik Srbije
Srpsko lekarsko društvo - Stomatološka sekcija, Beograd., 64(3), 136-145.
https://doi.org/10.1515/sdj-2017-0014
Jokanović V, Čolović B, Antonijević Đ, Mićić M, Živković S. Various methods of 3D and bio-printing. in Stomatološki glasnik Srbije. 2017;64(3):136-145.
doi:10.1515/sdj-2017-0014 .
Jokanović, Vukoman, Čolović, Božana, Antonijević, Đorđe, Mićić, Milutin, Živković, Slavoljub, "Various methods of 3D and bio-printing" in Stomatološki glasnik Srbije, 64, no. 3 (2017):136-145,
https://doi.org/10.1515/sdj-2017-0014 . .
2