Faculty of Medicine University of Kragujevac [JP26/10]

Link to this page

Faculty of Medicine University of Kragujevac [JP26/10]

Authors

Publications

Cytotoxic Effects of Glass Ionomer Cements on Human Dental Pulp Stem Cells Correlate with Fluoride Release

Kanjevac, Tatjana; Milovanović, Marija; Volarević, Vladislav; Lukić, Miodrag L.; Arsenijević, Nebojša; Marković, Dejan; Zdravković, Nebojša; Tešić, Živoslav; Lukić, Aleksandra

(Bentham Science Publ Ltd, Sharjah, 2012)

TY  - JOUR
AU  - Kanjevac, Tatjana
AU  - Milovanović, Marija
AU  - Volarević, Vladislav
AU  - Lukić, Miodrag L.
AU  - Arsenijević, Nebojša
AU  - Marković, Dejan
AU  - Zdravković, Nebojša
AU  - Tešić, Živoslav
AU  - Lukić, Aleksandra
PY  - 2012
UR  - https://smile.stomf.bg.ac.rs/handle/123456789/1752
AB  - Objectives: Glass ionomer cements (GICs) are commonly used as restorative materials. Responses to GICs differ among cell types and it is therefore of importance to thoroughly investigate the influence of these restorative materials on pulp stem cells that are potential source for dental tissue regeneration. Eight biomaterials were tested: Fuji I, Fuji II, Fuji VIII, Fuji IX, Fuji Plus, Fuji Triage, Vitrebond and Composit. We compared their cytotoxic activity on human dental pulp stem cells (DPSC) and correlated this activity with the content of Fluoride, Aluminium and Strontium ions in their eluates. Methods: Elution samples of biomaterials were prepared in sterile tissue culture medium and the medium was tested for toxicity by an assay of cell survival/proliferation (MTT test) and apoptosis (Annexin V FITC Detection Kit). Concentrations of Fluoride, Aluminium and Strontium ions were tested by appropriate methods in the same eluates. Results: Cell survival ranged between 79.62% (Fuji Triage) to 1.5% (Fuji Plus) and most dead DPSCs were in the stage of late apoptosis. Fluoride release correlated with cytotoxicity of GICs, while Aluminium and Strontium ions, present in significant amount in eluates of tested GICs did not. Significance: Fuji Plus, Vitrebond and Fuji VIII, which released fluoride in higher quantities than other GICs, were highly toxic to human DPSCs. Opposite, low levels of released fluoride correlated to low cytotoxic effect of Composit, Fuji I and Fuji Triage.
PB  - Bentham Science Publ Ltd, Sharjah
T2  - Medicinal Chemistry
T1  - Cytotoxic Effects of Glass Ionomer Cements on Human Dental Pulp Stem Cells Correlate with Fluoride Release
VL  - 8
IS  - 1
SP  - 40
EP  - 45
DO  - 10.2174/157340612799278351
ER  - 
@article{
author = "Kanjevac, Tatjana and Milovanović, Marija and Volarević, Vladislav and Lukić, Miodrag L. and Arsenijević, Nebojša and Marković, Dejan and Zdravković, Nebojša and Tešić, Živoslav and Lukić, Aleksandra",
year = "2012",
abstract = "Objectives: Glass ionomer cements (GICs) are commonly used as restorative materials. Responses to GICs differ among cell types and it is therefore of importance to thoroughly investigate the influence of these restorative materials on pulp stem cells that are potential source for dental tissue regeneration. Eight biomaterials were tested: Fuji I, Fuji II, Fuji VIII, Fuji IX, Fuji Plus, Fuji Triage, Vitrebond and Composit. We compared their cytotoxic activity on human dental pulp stem cells (DPSC) and correlated this activity with the content of Fluoride, Aluminium and Strontium ions in their eluates. Methods: Elution samples of biomaterials were prepared in sterile tissue culture medium and the medium was tested for toxicity by an assay of cell survival/proliferation (MTT test) and apoptosis (Annexin V FITC Detection Kit). Concentrations of Fluoride, Aluminium and Strontium ions were tested by appropriate methods in the same eluates. Results: Cell survival ranged between 79.62% (Fuji Triage) to 1.5% (Fuji Plus) and most dead DPSCs were in the stage of late apoptosis. Fluoride release correlated with cytotoxicity of GICs, while Aluminium and Strontium ions, present in significant amount in eluates of tested GICs did not. Significance: Fuji Plus, Vitrebond and Fuji VIII, which released fluoride in higher quantities than other GICs, were highly toxic to human DPSCs. Opposite, low levels of released fluoride correlated to low cytotoxic effect of Composit, Fuji I and Fuji Triage.",
publisher = "Bentham Science Publ Ltd, Sharjah",
journal = "Medicinal Chemistry",
title = "Cytotoxic Effects of Glass Ionomer Cements on Human Dental Pulp Stem Cells Correlate with Fluoride Release",
volume = "8",
number = "1",
pages = "40-45",
doi = "10.2174/157340612799278351"
}
Kanjevac, T., Milovanović, M., Volarević, V., Lukić, M. L., Arsenijević, N., Marković, D., Zdravković, N., Tešić, Ž.,& Lukić, A.. (2012). Cytotoxic Effects of Glass Ionomer Cements on Human Dental Pulp Stem Cells Correlate with Fluoride Release. in Medicinal Chemistry
Bentham Science Publ Ltd, Sharjah., 8(1), 40-45.
https://doi.org/10.2174/157340612799278351
Kanjevac T, Milovanović M, Volarević V, Lukić ML, Arsenijević N, Marković D, Zdravković N, Tešić Ž, Lukić A. Cytotoxic Effects of Glass Ionomer Cements on Human Dental Pulp Stem Cells Correlate with Fluoride Release. in Medicinal Chemistry. 2012;8(1):40-45.
doi:10.2174/157340612799278351 .
Kanjevac, Tatjana, Milovanović, Marija, Volarević, Vladislav, Lukić, Miodrag L., Arsenijević, Nebojša, Marković, Dejan, Zdravković, Nebojša, Tešić, Živoslav, Lukić, Aleksandra, "Cytotoxic Effects of Glass Ionomer Cements on Human Dental Pulp Stem Cells Correlate with Fluoride Release" in Medicinal Chemistry, 8, no. 1 (2012):40-45,
https://doi.org/10.2174/157340612799278351 . .
54
34
51