Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes

Link to this page

info:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/45001/RS//

Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes (en)
Наноструктурни функционални и композитни материјали у каталитичким и сорпционим процесима (sr)
Nanostrukturni funkcionalni i kompozitni materijali u katalitičkim i sorpcionim procesima (sr_RS)
Authors

Publications

Marginal Gaps between 2 Calcium Silicate and Glass lonomer Cements and Apical Root Dentin

Biočanin, Vladimir; Antonijević, Đorđe; Poštić, Srđan; Ilić, Dragan; Vuković, Zorica; Milić, Marija; Fan, Yifang; Li, Zhiyu; Brković, Božidar; Durić, Marija

(Elsevier Science Inc, New York, 2018)

TY  - JOUR
AU  - Biočanin, Vladimir
AU  - Antonijević, Đorđe
AU  - Poštić, Srđan
AU  - Ilić, Dragan
AU  - Vuković, Zorica
AU  - Milić, Marija
AU  - Fan, Yifang
AU  - Li, Zhiyu
AU  - Brković, Božidar
AU  - Durić, Marija
PY  - 2018
UR  - https://smile.stomf.bg.ac.rs/handle/123456789/2289
AB  - Introduction: The outcome of periapical surgery has been directly improved with the introduction of novel material formulations. The aim of the study was to compare the retrograde obturation quality of the following materials: calcium silicate (Biodentine; Septodont, Saint-Maur-des-Fosses, France), mineral trioxide aggregate (MTA+; Cerkamed Company, Stalowa Wola, Poland), and glass ionomer cement (Fuji IX; GC Corporation, Tokyo, Japan). Methods: Materials' wettability was calculated concerning the contact angles of the cements measured using a glycerol drop. Cements' porosity was determined using mercury intrusion porosimetry and micro computed tomographic (mu CT) imaging. Extracted upper human incisors were retrofilled, and mu CT analysis was applied to calculate the volume of the gap between the retrograde filling material and root canal dentin. Experiments were performed before and after soaking the materials in simulated body fluid (SBF). Results: No statistically significant differences were found among the contact angles of the studied materials after being soaked in SBF. The material with the lowest nanoporosity (Fuji IX: 2.99% and 4.17% before and after SBF, respectively) showed the highest values of microporosity (4.2% and 3.1% before and after SBF, respectively). Biodentine had the lowest value of microporosity (1.2% and 0.8% before and after SBF, respectively) and the lowest value of microgap to the root canal wall ([10 +/- 30] x 10(-3) mm(3)). Conclusions: Biodentine and MTA possess certain advantages over Fuji IX for hermetic obturation of retrograde root canals. Biodentine shows a tendency toward the lowest marginal gap at the cement-to-dentin interface.
PB  - Elsevier Science Inc, New York
T2  - Journal of Endodontics
T1  - Marginal Gaps between 2 Calcium Silicate and Glass lonomer Cements and Apical Root Dentin
VL  - 44
IS  - 5
SP  - 816
EP  - 821
DO  - 10.1016/j.joen.2017.09.022
ER  - 
@article{
author = "Biočanin, Vladimir and Antonijević, Đorđe and Poštić, Srđan and Ilić, Dragan and Vuković, Zorica and Milić, Marija and Fan, Yifang and Li, Zhiyu and Brković, Božidar and Durić, Marija",
year = "2018",
abstract = "Introduction: The outcome of periapical surgery has been directly improved with the introduction of novel material formulations. The aim of the study was to compare the retrograde obturation quality of the following materials: calcium silicate (Biodentine; Septodont, Saint-Maur-des-Fosses, France), mineral trioxide aggregate (MTA+; Cerkamed Company, Stalowa Wola, Poland), and glass ionomer cement (Fuji IX; GC Corporation, Tokyo, Japan). Methods: Materials' wettability was calculated concerning the contact angles of the cements measured using a glycerol drop. Cements' porosity was determined using mercury intrusion porosimetry and micro computed tomographic (mu CT) imaging. Extracted upper human incisors were retrofilled, and mu CT analysis was applied to calculate the volume of the gap between the retrograde filling material and root canal dentin. Experiments were performed before and after soaking the materials in simulated body fluid (SBF). Results: No statistically significant differences were found among the contact angles of the studied materials after being soaked in SBF. The material with the lowest nanoporosity (Fuji IX: 2.99% and 4.17% before and after SBF, respectively) showed the highest values of microporosity (4.2% and 3.1% before and after SBF, respectively). Biodentine had the lowest value of microporosity (1.2% and 0.8% before and after SBF, respectively) and the lowest value of microgap to the root canal wall ([10 +/- 30] x 10(-3) mm(3)). Conclusions: Biodentine and MTA possess certain advantages over Fuji IX for hermetic obturation of retrograde root canals. Biodentine shows a tendency toward the lowest marginal gap at the cement-to-dentin interface.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Endodontics",
title = "Marginal Gaps between 2 Calcium Silicate and Glass lonomer Cements and Apical Root Dentin",
volume = "44",
number = "5",
pages = "816-821",
doi = "10.1016/j.joen.2017.09.022"
}
Biočanin, V., Antonijević, Đ., Poštić, S., Ilić, D., Vuković, Z., Milić, M., Fan, Y., Li, Z., Brković, B.,& Durić, M.. (2018). Marginal Gaps between 2 Calcium Silicate and Glass lonomer Cements and Apical Root Dentin. in Journal of Endodontics
Elsevier Science Inc, New York., 44(5), 816-821.
https://doi.org/10.1016/j.joen.2017.09.022
Biočanin V, Antonijević Đ, Poštić S, Ilić D, Vuković Z, Milić M, Fan Y, Li Z, Brković B, Durić M. Marginal Gaps between 2 Calcium Silicate and Glass lonomer Cements and Apical Root Dentin. in Journal of Endodontics. 2018;44(5):816-821.
doi:10.1016/j.joen.2017.09.022 .
Biočanin, Vladimir, Antonijević, Đorđe, Poštić, Srđan, Ilić, Dragan, Vuković, Zorica, Milić, Marija, Fan, Yifang, Li, Zhiyu, Brković, Božidar, Durić, Marija, "Marginal Gaps between 2 Calcium Silicate and Glass lonomer Cements and Apical Root Dentin" in Journal of Endodontics, 44, no. 5 (2018):816-821,
https://doi.org/10.1016/j.joen.2017.09.022 . .
1
28
15
21