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Samo Hočevar 3 and Rebeka Rudolf 4,*

1 Department of Orthodontics, School of Dental Medicine, University of Belgrade, Doktora Subotića 8,
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Abstract: Nickel-titanium (NiTi) orthodontic archwires are crucial in the initial stages of orthodontic
therapy when the movement of teeth and deflection of the archwire are the largest. Their great
mechanical properties come with their main disadvantage—the leakage of nickel. Various in vitro
studies measured nickel leakage from archwires that were only immersed in the medium with little or
minimal simulation of all stress and deflection forces that affect them. This study aims to overcome
that by simulating deflection forces that those archwires are exposed to inside the mouth of a patient.
NiTi orthodontic archwires were immersed in CACO2-2 cell culture medium and then immediately
loaded while using a simulator of multiaxial stress for 24 h. After the experiment, the surface of the
NiTi orthodontic archwires were analysed while using scanning electron microscopy (SEM) and auger
electron spectroscopy (AES). The observations showed significant microstructural and compositional
changes within the first 51 nm thickness of the archwire surface. Furthermore, the released nickel and
titanium concentrations in the CACO2-2 cell culture medium were measured while using Inductively
Coupled Plasma Mass Spectroscopy (ICP-MS). It was found out that the level of released nickel ions
was 1.310 µg/L, which can be assigned as statistically significant results. These data represent the first
mention of the already detectable release of Ni ions after 24 h during the simulation of mechanical
loading in the CACO2-2 cell culture medium, which is important for clinical orthodontic praxis.

Keywords: nickel-titanium; orthodontic archwires; surface; simulation; mechanical loading; CACO2-2
cell culture medium; scanning electron microscopy (SEM); auger electron spectroscopy (AES);
inductively coupled plasma mass spectroscopy (ICP-MS)

1. Introduction

Today, shape memory alloys (SMA) have a wide variety of medical applications, including
dentistry, especially for orthodontic treatment. They are attractive due to their superelasticity
behaviour or functional property above the temperature austenite finish (Af), and they are characterised
by martensitic phase transformation, which is caused by the initiation of stress with enough value,
leading to the changes of phase or microstructure in the SMA (austenite to martensite). Nickel-titanium
(NiTi) orthodontic archwires are the most useful, where nickel and titanium are in equiatomic
proportions—they are known as Nitinol. An ongoing challenge in the design of NiTi orthodontic
archwires is to simultaneously have excellent biocompatibility, while also retaining adequate mechanical
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properties. The biocompatibility of NiTi orthodontic archwires has been investigated in many different
studies [1–11]. Clinicians remain cautious of NiTi orthodontic archwire usage, because of their large
nickel content, a long period of time being required for orthodontic treatment, and the high incidence
of allergic reactions to nickel [1]. Several case reports describe allergic reactions of orthodontic patients
to NiTi archwires [2,3]. One study concluded that there may be a risk of sensitising patients to
nickel after long-term exposure [4]. Many studies proved the cytotoxicity of nickel, as it reduced the
level of glutathione by binding to the sulfhydryl group of amino acids [5,6]. Nickel may also cause:
lymphotoxicity [7], immunotoxicity [8], haemotoxicity [9], genotoxicity [10], and carcinogenicity [11].
Many studies have demonstrated that nickel release from these wires is very low and under the
required threshold to cause biological effects, despite the high content of nickel in NiTi archwires [12–14].
The reason for this is that NiTi archwires have a high content of titanium, which makes it possible
to form, with Ni, a stable crystal lattice with minimal potential release of nickel ions during the
orthodontic treatment. On the other hand, titanium is a highly reactive element, which, once in contact
with oxygen, immediately reacts to form a titanium oxide layer on the surface of the alloy. It is mainly
composed of TiO2 as the free enthalpy of formation of TiO2 is negative, and it exceeds the enthalpy
of the formation of nickel oxides by at least two- or three-fold in absolute value [15]. It protects
the archwires from corrosion, and it creates a physical and mechanical barrier for the oxidation of
nickel, leaving it deeper in the archwire [16]. This titanium oxide layer is very passive, but it could be
removed or destroyed by many different factors in the mouth. Those archwires are under constant
mechanical stress in the mouth, and they are simultaneously immersed in saliva, ingested fluids,
temperature fluctuations, masticatory force, and topical fluoride modalities (toothpaste, mouthwashes,
gels and varnish) [17], which also affect the surface of the archwires. Besides this, titanium has one
great disadvantage, i.e., poor tribological properties and it exibits high friction and wear coefficients,
as well as poor abrasion and fretting resistance when sliding against itself or other material [18]. Inside
the mouth, the NiTi archwires are in constant contact with brackets that are made from different
materials (stainless steel, ceramic, composite). Constant sliding and friction is inevitable in between
them. Additionally, oxides, impurities, and pores are the key reasons for severe cavitation erosion
damage of the NiTi [19].

Many in vitro studies examined NiTi archwires in static environments by putting them in different
media and determining the level of released nickel [20,21]. Some experimental research deformed
NiTi archwires only using one-dimensional loading, or failed to deform them at all. These procedures
displayed results, whereby the level of released nickel showed little correspondence to the nickel
that was released in the mouth. The Orthodontists deform NiTi archwire during the therapy and
place it inside the bracket slot of every tooth (as shown in Figure 1a). The main stresses that deform
NiTi archwires are the combination of bending stresses (tension and compressive) in conjunction with
torsion and bending stresses. Archwires start unloading in order to come into a more stable austenitic
phase and produce forces that move teeth after being placed inside the brackets. Teeth will move
in a different manner, depending on the various levels of periodontal loss and the different stress
distribution inside a healthy, endodontically treated, and restored tooth [22]. Fercec et al. [23] designed
the simulation of multiaxial stress equipment (SMAS) that could provide uniaxial and multiaxial forces
in order to deform the NiTi archwires (Figure 1b). With SMAS, different mechanical loading of the
archwires can be simulated to imitate the real situation in the oral cavity. It is necessary to emphasize
here that SMAS can only simulate intraoral forces that originate from the crowding of the teeth and
the bending angle of the archwire, and cannot simulate frictional or masticatory forces. Based on the
literature review, it was found that the experiment was not created to simulate contact of any fluid
(medium) from the mouth with the archwires under loading. Consequently, the SMAS needed to be
altered to facilitate contact of the NiTi archwires with the proper medium.

Based on this thesis, our reseach focused on the immersion of NiTi orthodontic archwires
in medium and loading immediately, while using the SMAS for 24 h at an ambient temperature.
The CACO2-2 cell culture medium was chosen, because it represents heterogeneous cells and it has
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found applications in cell invasion studies. The CACO-2 cell culture medium is used widely across
the pharmaceutical industry as an in vitro model of the human small intestinal mucosa to predict
the absorption of orally administered drugs with different kits [24]. Consequently, all of the metals
that were released into the mouth of a patient during orthodontic treatment reach the intestines and
CACO-2 cells as its crucial part. Various studies proved that nickel [25] and TiO2 nanoparticles affect
CACO-2 cells [26,27]. Those metals caused changes in cell viability, protein synthesis, geno-toxicity,
oxidative stress, β-actin synthesis, and gene expression. All of those effects of nickel on cells were
observed during 24 h, as in our study. The selected time, 24 h of simulation test, was chosen in
accordance with the findings by Staffolani et al. [28], who discovered that nickel release from archwires
reached its highest values on the first day. Some studies even point out that the initial Ni release
increases are sustained, and they fail to drop over a prolonged period of a few months [29–32]. The
amount of nickel that is released can vary, depending on the variable nickel surface concentrations
that were reported for NiTi archwires (0.4–15 at.%) [33]. After the testing, demanding investigations
were carried out, including the observation of changes on the NiTi orthodontic archwires’ surface
and measuring the ions’ content in CACO2-2 cell culture medium as the results of release from the
archwires. The logic of measuring the level of nickel in the CACO-2 cell line, instead of using the
keratocytes, was that nickel released from the orthodontic archwire only stays a short amount of time in
the mouth of a patient. It is ingested and, therefore, stays a much longer time in the colon, where it has
higher chances to interact and affect cells. Similar, like in Pagano et al.’ study [34], the cytotoxicity essay
(MTT-3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay) was planned to
be done on CACO-2 cell culture, and to determine cell viability according to mitochondrial enzyme
dehydrogenaze activity.
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Figure 1. (a) Fixed orthodontic appliance (arrow pointing to the bending and torsional stresses of
the archwire); (b) Simulation of multiaxial stress equipment (SMAS) [23]. Reprinted with permission
from [23]. © 2014 Elsevier.

The aim of this work was to dicover any changes in the surface of NiTi archwires and, if they are
present, to measure the surface concentration of elements and released ion content into the medium
during a 24 h deflection time. The null hypotheses of this study were: (1) There are no changes in the
concentration of elements in the 51 nm of the wire surface, (2) A significant amount of nickel is not
released from the wires into the medium, and (3) The amount of released nickel is the same for the
deformed and initial archwires.

2. Materials and Methods

2.1. Materials

Commercially available NiTi archwires Rematitan (Dentaurum, Ispringen, Germany) dimensions
0.40 mm × 0.56 mm (0.016′′ × 0.022′′) were used in this study. The selected archwires had nearly
equiatomic composition (50 at.% Ni, 50 at.% Ti). The American Type Culture Collection provided the
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CACO-2 cell line (ATCC, Manassas, VA, USA) and it represented a continuous heterogeneous human
epithelial colorectal adenocarcinoma cell line.

2.2. Methods

Mechanical loading in CACO2-2 cell culture SMAS was used for the simulation of NiTi orthodontic
archwires [23] with the reconstruction, which represents the additional installation of a chamber
(Figure 2a,b) with the volume 4 mL. The chamber was made from polymer material (plexiglass), which
exhibits excellent mechanical and dimensional stability, and it is highly inert. It also lacks any metal
that could contaminate the results, and it is not electro-conductive. The chamber construction was
created, so that the CACO2-2 cell culture medium was in continuous contact with the archwires during
testing in the SMAS: The archwires that were inside the SMAS went through the chamber in one
part of their length. The chamber was closed with a cover that was made from the same material as
the chamber to prevent leaking and evaporation of the liquid. Evaporation was prevented using the
cover, which was further surrounded by silicone to entirely seal the chamber, therefore that amount of
medium could be placed inside it during the experiment. For the purpose of this study, the archwires
were immersed in CACO-2 cell culture medium inside the chamber.
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Figure 2. Schematic presentation of (a) the chamber and (b) the cover.

2.3. Experimental Setup

In the simulation testing, orthodontic archwires Rematitan (Dentaurum, Ispringen, Germany) were
placed in the SMAS (National Instruments OM 21 benchtop micro-ohmmeter, AOIP company, 52 Avenue
Paul Langevin, 91130 Ris-Orangis, Paris, France) through the chamber and then bent at an angle of 30◦,
which represents the mean bending angle in the mouth of the average orthodontic patient. The length
of the archwire in contact with CACO-2 cell culture medium was 3 cm. Four archwires were placed into
the SMAS chamber at the same time in order to get as close to the situation of an average orthodontic
patient, where about 12–15 cm length of orthodontic archwire is needed. After this, 4 mL of CACO-2
cell culture medium was added to the chamber and, in the next phase, the simulation test started for
24 h. A CLP load cell (HBM, Darmstadt, Germany) was used to measure the uni-axial tension force
of the applied load. Displacement, which was caused by the screw, was measured from the initial
distance to the flexible part.
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2.4. Surface Analysis

The surfaces of NiTi orthodontic archwires after simulation testing were examined with scanning
electron microscopy (SEM, Sirion 400 NC, FEI, Hillsboro, OR, USA) and auger electron spectroscopy
(AES). The initial (non-deformed and non-immersed) orthodontic archwire served as a control. AES was
performed while using a Microlab 310F VG-Scientific SEM/AES/X-ray photoelectron spectroscopy (XPS)
(Thermo Scientific, Waltham, MA, USA), a field emission scanning spectrometer of auger electrons.
A 10 kV primary electron beam was employed for this investigation, with a primary electron beam
current of approximately 10 nA and approximate diameter of 10 nm resolution. The sample was Ar+

sputtered with a sputter rate of 1 nm/min. for different sputter length times. AES spectrum was made
after each sputtering time [35].

2.5. Measurement of Ions’ Release

We prepared two types of testing in order to determine the impact of the load simulation on the
release of ions from NiTi archwire in CACO-2 cell culture medium: (i) Exposure of NiTi archwires
without any loading i.e., only immersed for 24 h (as a control sample) and (ii) Exposure with SMAS
loading under the same conditions (four archwires, the same volume of medium, temperature, etc.).
Inductively coupled plasma mass spectrometry (ICP-MS) while using a spectrometer (HP, Agilent 7500
ce, equipped with a collision cell, Santa Clara, CA, USA), was performed on both CACO-2 cell culture
mediums to measure the concentration of the released nickel and titanium ions. ICP-MS analysis was
carried out under the operating conditions: Power = 1.5 kW, Nebulizer = Meinhard, plasma gas flow
(L/min) = 15, Nebulizer gas flow (L/min) = 0.85, Make up gas flow (L/min) = 0.28, and Reaction gas
flow (mL/min) = 4.0. Prior to the analysis, the samples were dissolved in 10% (v/v) aqua regia. Matrix
matched calibration solutions were prepared and analysed for calibration. Relative measurement
uncertainty was established to be ±3%. The ICP-MS technique was used due to the advantages over
other elemental analysers, as it is possible to perform quantitative analysis in a very large concentration
range (from ng/mL in the sample solution until 100% in the sample). Besides this, correlation between
the signal and concentration is linear for about five orders of magnitude for most of the analyses; there
is a relatively good precision of measurements (around 3%), low matrix effects, and short analysis time.

3. Results and Discussion

3.1. Surface Analysis

The surface examination with SEM showed significant microstructure differences between the
initial and deformed archwires (see Figure 3a,b). The initial archwire surface is rough, with visible
holes and other defects, while the deformed archwire surface is smooth and without any other visible
defects (inclusions, etc.). This can be attributed to the influence of mechanical loading, which led to the
elongation and permanent deformation of the NiTi archwire [36] and the faster release of elements
from the surface into the medium.

AES analyses were performed on the selected archwire surfaces (A1, A2—Figure 3a,b), the results
are shown in Figure 4a,b. The AES detected a signal from the carbon, mostly originating from the C–C
bonds at 280 eV, which suggested a residual contamination, probably from the atmosphere. Analysis
of the spectra in the Ti 2p region indicates all the titanium to be present in the form of TiO2. It has
binding energies at 380 and 420 eV. The signal from the Ni 2p region was dominated by one large
peak at 850 eV in both wires, but it is larger in the second deformed wire. There are also two smaller
peaks at 730 and 780 eV that are similar in both of the wires. They correspond to the nickel oxides
NiO and Ni2O3. The peak at 850 eV corresponds to elemental nickel. In Figure 4b, oxygen had one
peak at approximately 530 eV, which pointed to a significant contribution from the Ti oxide, and upon
closer inspection, another peak is observable at approximately 500 eV, which corresponds to Ni oxide.
The deformed wire showed a higher level of nickel oxide at 500 eV despite the small amount of Ni
oxide in the control wire.
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Figure 4. Auger electron spectroscopy (AES) spectra of archwire surfaces: (a) Initial (control);
(b) Deformed after the SMAS simulation test.

Surface analysis AES showed concentration of elements in the first 51 nm of the selected
archwires—Figure 5a,b depicts those results and discovered different concentrations of elements
between the initial and deformed archwires. AES revealed the presence of carbon on the surface
of both archwires. The binding energy of the carbon shows that it originates from the atmosphere
(Figure 4a,b). It was detected that there is 40% less carbon present in the deformed archwire in 4 nm of
depth, and an almost undetectable amount from 10 nm of depth, although, oxygen replaces carbon
in the superficial layer of the wire in the deformed archwire (Figure 5b). Titanium is present on the
surface of both archwires, and the nickel content is undetectable in the first 4 nm of both archwires.
Therefore, it can be concluded that the oxygen is evidently connected to titanium, forming a protective
layer of titanium oxides. In contrast to nickel, titanium with oxygen reacts immediately, and it forms
a few oxides, but the most stable is in the form of TiO2. The thickness of the oxide layer in the
deformed archwire is about 51 nm, which is concluded from the fact that the level of oxygen drops to
a concentration of 0% (Figure 5b). That is in accordance with the finding that the Ti-oxide film thickness
ranges between 7 and 70 nm [37]. In contrast to this, the oxide layer is much thicker in the initial
archwire, and the concentration of oxygen at a depth of 51 nm was still 12.2% (Figure 5a). The precise
thickness of the oxide layer could not be detected on the initial archwire due to the fact that the AES was
performed in the first 51 nm of the surface. Therefore, it could be concluded that the deformation of the
archwire during 24 h affected the oxide thickness. The oxygen content of the deformed archwire differs
from the initial archwire, and it is the highest at a depth of 6 nm. From Figure 4a,b it can be predicted
that there is a significantly higher content of nickel oxide in the deformed archwire. The content of
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the nickel oxide is noticeable between 4 and 11 nm of the deformed archwire. From the results that
were obtained, the amount of titanium is constantly increasing towards the bulk of the material in both
archwires, and thus the amount of nickel shows a similar pattern in the initial archwire. However,
this is slightly altered in the deformed archwire, where the rapid increase of nickel concentration can
be noticed from the 11 nm depth. The difference of the nickel content is more than double at 16 nm
depth between the archwires. From Figure 4b it can be concluded that most of the reason for that
increased nickel content is in its elemental and oxidised state, which explains the phenomenon that,
during the deformation of the archwire, nickel ions diffuse from the bulk of the material to the surface
layer. Importantly, surface nickel ions dissolve more easily into the environment, similar to nickel
ions during the heat treatment process that was described by Shabalovskaya et al. [33]. Besides oxide
thickness, the surface nickel concentracion in NiTi shape memory alloys is a very important factor
when considering the stability of the archwires [37]. The deformed archwire also exhibits a significant
release of Ni ions due to the change in Ni/Ti ratio in contrast to the initial archwire. This is also followed
by a thinner C-adsorption layer, which prevents the opening of the cracks in the Ti-oxide layer and the
dissolution of Ni ions into the CACO-2 cell culture medium.
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3.2. Results of Ions’ Release

Table 1 shows the ICP-MS results of the ions’ release in the CACO-2 cell culture mediums.
The results indicated that titanium concentrations are below the detection limit (<0.05 µg/L) in both of
the samples. On the other hand, the concentration of nickel is different; the difference was 70 µg/L/day.
This suggested a small level of nickel leakage out of the archwire into the media.

Table 1. Ni and Ti ion concentrations from NiTi archwire in CACO-2 cell culture mediums after
exposure with without loading (as a control sample) and after SMAS testing.

Sample Conc Ni (µg/L) Conc Ti (µg/L)

Control 1.240 <0.05
SMAS Testing 1.310 <0.05

Based on the obtained results, it can be concluded that the deformation of the archwire is
an important factor that increases nickel release into the CACO-2 cell culture media. The concentration
of nickel is 70 µg/L higher after 24 h in comparison with an unloaded archwire. Moreover, this
represents the mean level of nickel released from a single wire of the average length of 12 cm (four
pieces), while the patients usually have two arch wires in their mouth, and thus a total value of 140 µg/L
additional nickel release. These results are in correlation with the literature, where similar levels of Ni
release from similar archwires are mentioned during a comparable period of time [38,39]. The shape of
the archwire can also influence the amount of nickel released, and rectangular archwires release more
elements than round ones [40]. The value of released nickel is below the daily dietary intake level
(300–500 µg) [41] and below the critical results (it must be taken into account that nickel can be released
from a whole orthodontic appliance, which consists of bands, brackets, or some other attachments that
also increase the nickel levels in the mouth). The physiological values are, therefore, much higher, and
they can sometimes cause allergic reactions [42]. Furthermore, one study showed that even sub-toxic
concentrations of metal ions can alter osteoblast activity [43]. Similarly, other authors [44] demonstrated
that the 7.2 g/mL Ni ions released were sufficient for stimulating monocyte secretion of IL1, which,
consequently, promoted endothelial cells to induce ICAM1 indirectly (Intracellular adhesion molecules
that are involved in the activation of other Inflammatory cells). In addition, Cederbrant et al. [45]
showed that an increase in lymphocyte proliferation and IL1 secretion could be induced, even with
a small quantity of nickel, which is in correlation with our previous finding that thought archwires
were non-cytotoxic for L929 cells, according to ISO Standards [15841:2014] [46], Rematitan superelastic
archwires induced the apoptosis of rat thymocytes. This finding suggests strongly that, besides the
released nickel ion concentration, the surface of the NiTi wire is most probably responsible for the
cytotoxic effect [38]. It is important to declare that, in clinical conditions, orthodontic archwires are
subjected to additional masticatory forces, abrasive forces from food and toothbrushes, and also
temperature changes and various chemicals from saliva, liquids, and medicine. These can all damage
the protective surface titanium oxide layer and cause corrosion, which leads to an increased level of
released nickel ions. A few studies concluded that saliva, probiotic supplement and oral antiseptics
affect both the general and localised corrosion of NiTi archwires, which also affects the mechanical
properties and the release of nickel from NiTi archwires [47,48]. The oral environment is harsh and the
conditions can change every second, so the archwires that are placed in the mouth need to resist all
of those changes, including corrosion. Sometimes orthodontic treatment is complex [49,50] and the
forces that are produced are much stronger than the ones with an average patient. Due to this complex
situation, it is difficult to simultaneously simulate all of those conditions during in vitro studies.

It is necessary to improve the surface as a research challenge, and for safe use of NiTi archwires in
the future. Namely, the presented study showed that the release of nickel ions from NiTi archwires
is not negligible. According to the literature, it is known that one possible way could be nitriding of
titanium with the formation of TiN/TiN2, as nitrogen has a higher hardening effect than oxygen [51,52].
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The other possible option could be the application of different coatings onto the NiTi surface that can
improve its characteristics [53]. From other studies it was found out that there are good results in
improving the frictional, biological, and aesthetic properties of stainless steel with electrophoretic
deposition of a bioactive glass coating that could also be implemented on NiTi archwires [54].

4. Conclusions

Within the present study of NiTi orthodontic archwires’ simulation loaded with multiaxial stresses
in CACO2-2 cell culture, specific conclusions could be drawn.

The deformation of the NiTi archwire up to 30◦ during 24 h is enough to produce surface structural
changes. SEM investigations of the deformed archwire surface revealed evident modification in
the roughness, and the surface became smoother. On this surface, 40% less carbon was detected in
comparison with the initial archwire surface. Besides this, the formatted thickness of the oxide layer on
the surface was about 51 nm, while this could not be detected in the case of the initial archwire surface.
It was found out that deformation accelerates the formation of oxides on the surface and with this
oxide thickness, where a significantly higher content of nickel oxide was detected in the depth between
4 and 11 nm below the archwire surface. The oxygen content of the deformed archwire surface differed
from the initial archwire surface, and it reached the highest value at a depth of 6 nm. This could be
attributed to the phenomenon that, during the deformation of the archwire, nickel ions diffused faster
from the bulk of the archwire surface.

Measurable nickel release during SMAS simulation of an archwire 12 cm in length is 1.310 µg/L,
even after short period of 24 h.These data could be important for clinical orthodontic praxis. Additionally,
the next studies must investigate the deformation time of the archwires, when considering the fact that
NiTi orthodontic archwires could be in the oral environment for months, which can have considerable
clinical implications. Based on the obtained results, it is recommended that, also in the case of
biocompatibility, studies must be conducted to investigate the influence of archwire loading on the
possible increase of nickel release content in comparison with the existing tests in order to obtain the
most realistic information regarding surface stability.
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