SMILE – Repository of the Faculty of Dental Medicine
University of Belgrade - Faculty of Dental Medicine
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   SMILE
  • Stomatološki fakultet
  • Radovi istraživača
  • View Item
  •   SMILE
  • Stomatološki fakultet
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Implementation of contact definitions calculated by fea to describe the healing process of basal implants

Thumbnail
2008
1420.pdf (2.197Mb)
Authors
Ihde, Stefan
Goldmann, Tomas
Himmlova, Lucie
Aleksić, Zoran
Kuzelka, Jiri
Article (Published version)
Metadata
Show full item record
Abstract
Aims: Bone structure around basal implants shows a dual healing mode: direct contact areas manifest primary osteonal remodeling, in the void osteotomy-induced spaces, the repair begins with woven bone formation. This woven bone is later converted into osteonal bone. The purpose of this study was to develop a model to accurately represent the interface between bone and basal implant throughout the healing process. The model was applied to the biological scenario of changing load distribution in a basal implant system over time. Methods: Computations were made through finite element analysis using multiple models with changing bone-implant contact definitions which reflected the dynamic nature of the interface throughout the bony healing process. Five stages of bony healing were calculated taking into account the changes in mineral content of bone in the vicinity of the load transmitting implant surfaces. Results: As the bony integration of basal implants proceeds during healing, peak st...resses within the metal structure shift geographically. While bony repair may still weaken osteonal bone, woven bone has already matured. This leads to changes in the load distribution between and within the direct contact areas, and bone areas which make later contact with implant. Conclusions: This study shows that basal implants undergo an intrinsic shift of maximum stress regions during osseointegration. Fatigue testing methods in the case of basal implants must therefore take into account this gradual shift from early healing phase until full osseointegration is achieved.

Keywords:
Progress of implant osseointegration / Finite element analysis (FEA) / Implant / Bone interaction & stresses / Implant fatigue testing methods / Intrinsic gradual stress shifting
Source:
Biomedical Papers - Olomouc, 2008, 152, 1, 169-173
Publisher:
  • Palacky Univ, Medical Fac, Olomouc
Funding / projects:
  • Czech Ministry of EducationMinistry of Education, Youth & Sports - Czech Republic [MSM 6840770012]
  • Grant Agency of the Czech RepublicGrant Agency of the Czech Republic [106/06/0849]

DOI: 10.5507/bp.2008.028

ISSN: 1213-8118

PubMed: 18795095

WoS: 000262331900028

Scopus: 2-s2.0-58149176757
[ Google Scholar ]
5
4
URI
https://smile.stomf.bg.ac.rs/handle/123456789/1425
Collections
  • Radovi istraživača
Institution/Community
Stomatološki fakultet
TY  - JOUR
AU  - Ihde, Stefan
AU  - Goldmann, Tomas
AU  - Himmlova, Lucie
AU  - Aleksić, Zoran
AU  - Kuzelka, Jiri
PY  - 2008
UR  - https://smile.stomf.bg.ac.rs/handle/123456789/1425
AB  - Aims: Bone structure around basal implants shows a dual healing mode: direct contact areas manifest primary osteonal remodeling, in the void osteotomy-induced spaces, the repair begins with woven bone formation. This woven bone is later converted into osteonal bone. The purpose of this study was to develop a model to accurately represent the interface between bone and basal implant throughout the healing process. The model was applied to the biological scenario of changing load distribution in a basal implant system over time. Methods: Computations were made through finite element analysis using multiple models with changing bone-implant contact definitions which reflected the dynamic nature of the interface throughout the bony healing process. Five stages of bony healing were calculated taking into account the changes in mineral content of bone in the vicinity of the load transmitting implant surfaces. Results: As the bony integration of basal implants proceeds during healing, peak stresses within the metal structure shift geographically. While bony repair may still weaken osteonal bone, woven bone has already matured. This leads to changes in the load distribution between and within the direct contact areas, and bone areas which make later contact with implant. Conclusions: This study shows that basal implants undergo an intrinsic shift of maximum stress regions during osseointegration. Fatigue testing methods in the case of basal implants must therefore take into account this gradual shift from early healing phase until full osseointegration is achieved.
PB  - Palacky Univ, Medical Fac, Olomouc
T2  - Biomedical Papers - Olomouc
T1  - Implementation of contact definitions calculated by fea to describe the healing process of basal implants
VL  - 152
IS  - 1
SP  - 169
EP  - 173
DO  - 10.5507/bp.2008.028
ER  - 
@article{
author = "Ihde, Stefan and Goldmann, Tomas and Himmlova, Lucie and Aleksić, Zoran and Kuzelka, Jiri",
year = "2008",
abstract = "Aims: Bone structure around basal implants shows a dual healing mode: direct contact areas manifest primary osteonal remodeling, in the void osteotomy-induced spaces, the repair begins with woven bone formation. This woven bone is later converted into osteonal bone. The purpose of this study was to develop a model to accurately represent the interface between bone and basal implant throughout the healing process. The model was applied to the biological scenario of changing load distribution in a basal implant system over time. Methods: Computations were made through finite element analysis using multiple models with changing bone-implant contact definitions which reflected the dynamic nature of the interface throughout the bony healing process. Five stages of bony healing were calculated taking into account the changes in mineral content of bone in the vicinity of the load transmitting implant surfaces. Results: As the bony integration of basal implants proceeds during healing, peak stresses within the metal structure shift geographically. While bony repair may still weaken osteonal bone, woven bone has already matured. This leads to changes in the load distribution between and within the direct contact areas, and bone areas which make later contact with implant. Conclusions: This study shows that basal implants undergo an intrinsic shift of maximum stress regions during osseointegration. Fatigue testing methods in the case of basal implants must therefore take into account this gradual shift from early healing phase until full osseointegration is achieved.",
publisher = "Palacky Univ, Medical Fac, Olomouc",
journal = "Biomedical Papers - Olomouc",
title = "Implementation of contact definitions calculated by fea to describe the healing process of basal implants",
volume = "152",
number = "1",
pages = "169-173",
doi = "10.5507/bp.2008.028"
}
Ihde, S., Goldmann, T., Himmlova, L., Aleksić, Z.,& Kuzelka, J.. (2008). Implementation of contact definitions calculated by fea to describe the healing process of basal implants. in Biomedical Papers - Olomouc
Palacky Univ, Medical Fac, Olomouc., 152(1), 169-173.
https://doi.org/10.5507/bp.2008.028
Ihde S, Goldmann T, Himmlova L, Aleksić Z, Kuzelka J. Implementation of contact definitions calculated by fea to describe the healing process of basal implants. in Biomedical Papers - Olomouc. 2008;152(1):169-173.
doi:10.5507/bp.2008.028 .
Ihde, Stefan, Goldmann, Tomas, Himmlova, Lucie, Aleksić, Zoran, Kuzelka, Jiri, "Implementation of contact definitions calculated by fea to describe the healing process of basal implants" in Biomedical Papers - Olomouc, 152, no. 1 (2008):169-173,
https://doi.org/10.5507/bp.2008.028 . .

DSpace software copyright © 2002-2015  DuraSpace
About Smile – School of dental Medicine dIgitaL archivE | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About Smile – School of dental Medicine dIgitaL archivE | Send Feedback

OpenAIRERCUB