Effects of a low-Shrinkage methacrylate monomer and monoacylphosphine oxide photoinitiator on curing efficiency and mechanical properties of experimental resin-based composites
Authorized Users Only
2016
Authors
Manojlović, DragicaDramićanin, Miroslav D.

Milošević, Miloš
Zeković, Ivana

Cvijović-Alagić, Ivana

Mitrović, Nenad

Miletić, Vesna

Article (Published version)

Metadata
Show full item recordAbstract
This study investigated the degree of conversion, depth of cure, Vickers hardness, flexural strength, flexural modulus and volumetric shrinkage of experimental composite containing a low shrinkage monomer FIT-852 (FIT; Esstech Inc.) and photoinitiator 2,4,6-trimethylbenzoyldiphenylphosphine oxide (TPO; Sigma Aldrich) compared to conventional composite containing Bisphenol A-glycidyl methacrylate (BisGMA) and camphorquinone-amine photoinitiator system. The degree of conversion was generally higher in FIT-based composites (45-64% range) than in BisGMA-based composites (34-58% range). Vickers hardness, flexural strength and modulus were higher in BisGMA-based composites. A polywave light-curing unit was generally more efficient in terms of conversion and hardness of experimental composites than a monowave unit. FIT-based composite containing TPO showed the depth of cure below 2 mm irrespective of the curing light. The depth of cure of FIT-based composite containing CQ and BisGMA-based com...posites with either photoinitiator was in the range of 2.8-3.0 mm. Volumetric shrinkage of FIT-based composite (0.9-5.7% range) was lower than that of BisGMA-based composite (2.2-12% range). FIT may be used as a shrinkage reducing monomer compatible with the conventional CQ-amine system as well as the alternative TPO photoinitiator. However, the depth of cure of FIT_TPO composite requires boosting to achieve clinically recommended thickness of 2 mm.
Keywords:
Composite / Dimethacrylate / Low shrinkage monomer / Degree of conversion / Mechanical properties / Lucirin TPOSource:
Materials Science & Engineering C - Materials for Biological Applications, 2016, 58, 487-494Publisher:
- Elsevier, Amsterdam
Funding / projects:
DOI: 10.1016/j.msec.2015.08.054
ISSN: 0928-4931
PubMed: 26478336
WoS: 000364247500057
Scopus: 2-s2.0-84941353433
Collections
Institution/Community
Stomatološki fakultetTY - JOUR AU - Manojlović, Dragica AU - Dramićanin, Miroslav D. AU - Milošević, Miloš AU - Zeković, Ivana AU - Cvijović-Alagić, Ivana AU - Mitrović, Nenad AU - Miletić, Vesna PY - 2016 UR - https://smile.stomf.bg.ac.rs/handle/123456789/2132 AB - This study investigated the degree of conversion, depth of cure, Vickers hardness, flexural strength, flexural modulus and volumetric shrinkage of experimental composite containing a low shrinkage monomer FIT-852 (FIT; Esstech Inc.) and photoinitiator 2,4,6-trimethylbenzoyldiphenylphosphine oxide (TPO; Sigma Aldrich) compared to conventional composite containing Bisphenol A-glycidyl methacrylate (BisGMA) and camphorquinone-amine photoinitiator system. The degree of conversion was generally higher in FIT-based composites (45-64% range) than in BisGMA-based composites (34-58% range). Vickers hardness, flexural strength and modulus were higher in BisGMA-based composites. A polywave light-curing unit was generally more efficient in terms of conversion and hardness of experimental composites than a monowave unit. FIT-based composite containing TPO showed the depth of cure below 2 mm irrespective of the curing light. The depth of cure of FIT-based composite containing CQ and BisGMA-based composites with either photoinitiator was in the range of 2.8-3.0 mm. Volumetric shrinkage of FIT-based composite (0.9-5.7% range) was lower than that of BisGMA-based composite (2.2-12% range). FIT may be used as a shrinkage reducing monomer compatible with the conventional CQ-amine system as well as the alternative TPO photoinitiator. However, the depth of cure of FIT_TPO composite requires boosting to achieve clinically recommended thickness of 2 mm. PB - Elsevier, Amsterdam T2 - Materials Science & Engineering C - Materials for Biological Applications T1 - Effects of a low-Shrinkage methacrylate monomer and monoacylphosphine oxide photoinitiator on curing efficiency and mechanical properties of experimental resin-based composites VL - 58 SP - 487 EP - 494 DO - 10.1016/j.msec.2015.08.054 ER -
@article{ author = "Manojlović, Dragica and Dramićanin, Miroslav D. and Milošević, Miloš and Zeković, Ivana and Cvijović-Alagić, Ivana and Mitrović, Nenad and Miletić, Vesna", year = "2016", abstract = "This study investigated the degree of conversion, depth of cure, Vickers hardness, flexural strength, flexural modulus and volumetric shrinkage of experimental composite containing a low shrinkage monomer FIT-852 (FIT; Esstech Inc.) and photoinitiator 2,4,6-trimethylbenzoyldiphenylphosphine oxide (TPO; Sigma Aldrich) compared to conventional composite containing Bisphenol A-glycidyl methacrylate (BisGMA) and camphorquinone-amine photoinitiator system. The degree of conversion was generally higher in FIT-based composites (45-64% range) than in BisGMA-based composites (34-58% range). Vickers hardness, flexural strength and modulus were higher in BisGMA-based composites. A polywave light-curing unit was generally more efficient in terms of conversion and hardness of experimental composites than a monowave unit. FIT-based composite containing TPO showed the depth of cure below 2 mm irrespective of the curing light. The depth of cure of FIT-based composite containing CQ and BisGMA-based composites with either photoinitiator was in the range of 2.8-3.0 mm. Volumetric shrinkage of FIT-based composite (0.9-5.7% range) was lower than that of BisGMA-based composite (2.2-12% range). FIT may be used as a shrinkage reducing monomer compatible with the conventional CQ-amine system as well as the alternative TPO photoinitiator. However, the depth of cure of FIT_TPO composite requires boosting to achieve clinically recommended thickness of 2 mm.", publisher = "Elsevier, Amsterdam", journal = "Materials Science & Engineering C - Materials for Biological Applications", title = "Effects of a low-Shrinkage methacrylate monomer and monoacylphosphine oxide photoinitiator on curing efficiency and mechanical properties of experimental resin-based composites", volume = "58", pages = "487-494", doi = "10.1016/j.msec.2015.08.054" }
Manojlović, D., Dramićanin, M. D., Milošević, M., Zeković, I., Cvijović-Alagić, I., Mitrović, N.,& Miletić, V.. (2016). Effects of a low-Shrinkage methacrylate monomer and monoacylphosphine oxide photoinitiator on curing efficiency and mechanical properties of experimental resin-based composites. in Materials Science & Engineering C - Materials for Biological Applications Elsevier, Amsterdam., 58, 487-494. https://doi.org/10.1016/j.msec.2015.08.054
Manojlović D, Dramićanin MD, Milošević M, Zeković I, Cvijović-Alagić I, Mitrović N, Miletić V. Effects of a low-Shrinkage methacrylate monomer and monoacylphosphine oxide photoinitiator on curing efficiency and mechanical properties of experimental resin-based composites. in Materials Science & Engineering C - Materials for Biological Applications. 2016;58:487-494. doi:10.1016/j.msec.2015.08.054 .
Manojlović, Dragica, Dramićanin, Miroslav D., Milošević, Miloš, Zeković, Ivana, Cvijović-Alagić, Ivana, Mitrović, Nenad, Miletić, Vesna, "Effects of a low-Shrinkage methacrylate monomer and monoacylphosphine oxide photoinitiator on curing efficiency and mechanical properties of experimental resin-based composites" in Materials Science & Engineering C - Materials for Biological Applications, 58 (2016):487-494, https://doi.org/10.1016/j.msec.2015.08.054 . .