SMILE – Repository of the Faculty of Dental Medicine
University of Belgrade - Faculty of Dental Medicine
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   SMILE
  • Stomatološki fakultet
  • Radovi istraživača
  • View Item
  •   SMILE
  • Stomatološki fakultet
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extraordinary biological properties of a new calcium hydroxyapatite/poly(lactide-co-glycolide)-based scaffold confirmed by in vivo investigation

Authorized Users Only
2017
Authors
Jokanović, Vukoman
Čolović, Božana
Marković, Dejan
Petrović, Milan
Soldatović, Ivan
Antonijević, Đorđe
Milosavljević, Petar
Sjerobabin, Nikola
Sopta, Jelena
Article (Published version)
Metadata
Show full item record
Abstract
This study examined the potential of a new porous calcium hydroxyapatite scaffold covered with poly (lactide-co-glycolide) (PLGA) as a bone substitute, identifying its advantages over Geistlich Bio-Oss (R), considered the gold standard, in in vivo biofunctionality investigations. Structural and morphological properties of the new scaffold were analyzed by scanning electron and atomic force microscopy. The biofunctionality assays were performed on New Zealand white rabbits using new scaffold for filling full-thickness defects of critical size. The evaluated parameters were: the presence of macrophages, giant cells, monoocytes, plasma cells, granulocytes, neo-angiogenesis, fibroplasia, and the percentage of mineralization. Parallel biofunctionality assays were performed using Geistlich Bio-Oss (R). The appearance of bone defects 12 weeks after the new scaffold implantation showed the presence of a small number of typical immune response cells. Furthermore, significantly reduced number of... capillary buds, low intensity of fibroplasia and high degree of mineralization in a lamellar pattern indicated that the inflammation process has been almost completely overcome and that the new bone formed was in the final phase of remodeling. All biofunctionality assays proved the new scaffold's suitability as a bone substitute for applications in maxillofacial surgery. It showed numerous biological advantages over Geistlich Bio-Oss (R) which was reflected mainly as a lower number of giant cells surrounding implanted material and higher degree of mineralization in new formed bone.

Keywords:
biofunctionality / hydroxyapatite / mineralization / nanotopology / PLGA / scaffold
Source:
Biomedical Engineering - Biomedizinische Technik, 2017, 62, 3, 295-306
Publisher:
  • Walter De Gruyter Gmbh, Berlin
Funding / projects:
  • Chemical and structural designing of nanomaterials for application in medicine and tissue engineering (RS-172026)

DOI: 10.1515/bmt-2015-0164

ISSN: 0013-5585

PubMed: 27285125

WoS: 000403532700008

Scopus: 2-s2.0-85020445343
[ Google Scholar ]
10
7
URI
https://smile.stomf.bg.ac.rs/handle/123456789/2187
Collections
  • Radovi istraživača
Institution/Community
Stomatološki fakultet
TY  - JOUR
AU  - Jokanović, Vukoman
AU  - Čolović, Božana
AU  - Marković, Dejan
AU  - Petrović, Milan
AU  - Soldatović, Ivan
AU  - Antonijević, Đorđe
AU  - Milosavljević, Petar
AU  - Sjerobabin, Nikola
AU  - Sopta, Jelena
PY  - 2017
UR  - https://smile.stomf.bg.ac.rs/handle/123456789/2187
AB  - This study examined the potential of a new porous calcium hydroxyapatite scaffold covered with poly (lactide-co-glycolide) (PLGA) as a bone substitute, identifying its advantages over Geistlich Bio-Oss (R), considered the gold standard, in in vivo biofunctionality investigations. Structural and morphological properties of the new scaffold were analyzed by scanning electron and atomic force microscopy. The biofunctionality assays were performed on New Zealand white rabbits using new scaffold for filling full-thickness defects of critical size. The evaluated parameters were: the presence of macrophages, giant cells, monoocytes, plasma cells, granulocytes, neo-angiogenesis, fibroplasia, and the percentage of mineralization. Parallel biofunctionality assays were performed using Geistlich Bio-Oss (R). The appearance of bone defects 12 weeks after the new scaffold implantation showed the presence of a small number of typical immune response cells. Furthermore, significantly reduced number of capillary buds, low intensity of fibroplasia and high degree of mineralization in a lamellar pattern indicated that the inflammation process has been almost completely overcome and that the new bone formed was in the final phase of remodeling. All biofunctionality assays proved the new scaffold's suitability as a bone substitute for applications in maxillofacial surgery. It showed numerous biological advantages over Geistlich Bio-Oss (R) which was reflected mainly as a lower number of giant cells surrounding implanted material and higher degree of mineralization in new formed bone.
PB  - Walter De Gruyter Gmbh, Berlin
T2  - Biomedical Engineering - Biomedizinische Technik
T1  - Extraordinary biological properties of a new calcium hydroxyapatite/poly(lactide-co-glycolide)-based scaffold confirmed by in vivo investigation
VL  - 62
IS  - 3
SP  - 295
EP  - 306
DO  - 10.1515/bmt-2015-0164
ER  - 
@article{
author = "Jokanović, Vukoman and Čolović, Božana and Marković, Dejan and Petrović, Milan and Soldatović, Ivan and Antonijević, Đorđe and Milosavljević, Petar and Sjerobabin, Nikola and Sopta, Jelena",
year = "2017",
abstract = "This study examined the potential of a new porous calcium hydroxyapatite scaffold covered with poly (lactide-co-glycolide) (PLGA) as a bone substitute, identifying its advantages over Geistlich Bio-Oss (R), considered the gold standard, in in vivo biofunctionality investigations. Structural and morphological properties of the new scaffold were analyzed by scanning electron and atomic force microscopy. The biofunctionality assays were performed on New Zealand white rabbits using new scaffold for filling full-thickness defects of critical size. The evaluated parameters were: the presence of macrophages, giant cells, monoocytes, plasma cells, granulocytes, neo-angiogenesis, fibroplasia, and the percentage of mineralization. Parallel biofunctionality assays were performed using Geistlich Bio-Oss (R). The appearance of bone defects 12 weeks after the new scaffold implantation showed the presence of a small number of typical immune response cells. Furthermore, significantly reduced number of capillary buds, low intensity of fibroplasia and high degree of mineralization in a lamellar pattern indicated that the inflammation process has been almost completely overcome and that the new bone formed was in the final phase of remodeling. All biofunctionality assays proved the new scaffold's suitability as a bone substitute for applications in maxillofacial surgery. It showed numerous biological advantages over Geistlich Bio-Oss (R) which was reflected mainly as a lower number of giant cells surrounding implanted material and higher degree of mineralization in new formed bone.",
publisher = "Walter De Gruyter Gmbh, Berlin",
journal = "Biomedical Engineering - Biomedizinische Technik",
title = "Extraordinary biological properties of a new calcium hydroxyapatite/poly(lactide-co-glycolide)-based scaffold confirmed by in vivo investigation",
volume = "62",
number = "3",
pages = "295-306",
doi = "10.1515/bmt-2015-0164"
}
Jokanović, V., Čolović, B., Marković, D., Petrović, M., Soldatović, I., Antonijević, Đ., Milosavljević, P., Sjerobabin, N.,& Sopta, J.. (2017). Extraordinary biological properties of a new calcium hydroxyapatite/poly(lactide-co-glycolide)-based scaffold confirmed by in vivo investigation. in Biomedical Engineering - Biomedizinische Technik
Walter De Gruyter Gmbh, Berlin., 62(3), 295-306.
https://doi.org/10.1515/bmt-2015-0164
Jokanović V, Čolović B, Marković D, Petrović M, Soldatović I, Antonijević Đ, Milosavljević P, Sjerobabin N, Sopta J. Extraordinary biological properties of a new calcium hydroxyapatite/poly(lactide-co-glycolide)-based scaffold confirmed by in vivo investigation. in Biomedical Engineering - Biomedizinische Technik. 2017;62(3):295-306.
doi:10.1515/bmt-2015-0164 .
Jokanović, Vukoman, Čolović, Božana, Marković, Dejan, Petrović, Milan, Soldatović, Ivan, Antonijević, Đorđe, Milosavljević, Petar, Sjerobabin, Nikola, Sopta, Jelena, "Extraordinary biological properties of a new calcium hydroxyapatite/poly(lactide-co-glycolide)-based scaffold confirmed by in vivo investigation" in Biomedical Engineering - Biomedizinische Technik, 62, no. 3 (2017):295-306,
https://doi.org/10.1515/bmt-2015-0164 . .

DSpace software copyright © 2002-2015  DuraSpace
About Smile – School of dental Medicine dIgitaL archivE | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About Smile – School of dental Medicine dIgitaL archivE | Send Feedback

OpenAIRERCUB