SMILE – Repository of the Faculty of Dental Medicine
University of Belgrade - Faculty of Dental Medicine
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   SMILE
  • Stomatološki fakultet
  • Radovi istraživača
  • View Item
  •   SMILE
  • Stomatološki fakultet
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Differentiation of stem cells from apical papilla into neural lineage using graphene dispersion and single walled carbon nanotubes

No Thumbnail
Authors
Simonović, Jelena
Toljić, Boško
Nikolić, Nadja
Perić, Mina
Vujin, Jasna
Panajotović, Radmila
Gajić, Radoš
Bekyarova, Elena
Cataldi, Amelia
Parpura, Vladimir
Milašin, Jelena
Article (Published version)
Metadata
Show full item record
Abstract
Stem cell-based therapies are considered a promising treatment modality for many medical conditions. Several types of stem cells with variable differentiation potentials have been isolated from dental tissues, among them stem cells from apical papilla (SCAP). In parallel, new classes of biocompatible nanomaterials have also been developed, including graphene and carbon nanotube-based materials. The aim of the study was to assess whether graphene dispersion (GD) and water-soluble single walled carbon nanotubes (ws-SWCNT), may enhance SCAPs capacity to undergo neural differentiation. SCAPs cultivated in neuroinductive medium supplemented with GD and ws-SWCNT, separately and in combination, were subjected to neural marker analysis by real-time polymerase chain reaction (neurofilament medium [NF-M], neurogenin-2 [ngn-2], III-tubulin, microtubule-associated protein 2) and immunocytochemistry (NeuN and III-tubulin). GD, ws-SWCNT, and their combination, had neuro-stimulatory effects on SCAPs,... as judged by the production of neural markers. Compared to cells grown in nanomaterial free medium, cells with GD showed higher production of B3T, cells with ws-SWCNT had higher production of ngn-2 and NF-M, while the combination of nanomaterials gave similar levels of both B3T and NF-M as the neuroinductive medium aloal ne, but with the finest neuron-like morphology. In conclusion, GD and ws-SWCNT seem to enhance neurdifferentiation of SCAP.

Keywords:
stem cells / apical papilla / neural induction / graphene dispersion / carbon nanotubes
Source:
Journal of Biomedical Materials Research Part A, 2018, 106, 10, 2653-2661
Publisher:
  • Wiley, Hoboken
Funding / projects:
  • Genetic control and molecular mechanisms in malignant, inflammatory and developmental pathologies of the orofacial region (RS-175075)

DOI: 10.1002/jbm.a.36461

ISSN: 1549-3296

PubMed: 29896770

WoS: 000448177600009

Scopus: 2-s2.0-85052912041
[ Google Scholar ]
26
18
URI
https://smile.stomf.bg.ac.rs/handle/123456789/2327
Collections
  • Radovi istraživača
Institution/Community
Stomatološki fakultet
TY  - JOUR
AU  - Simonović, Jelena
AU  - Toljić, Boško
AU  - Nikolić, Nadja
AU  - Perić, Mina
AU  - Vujin, Jasna
AU  - Panajotović, Radmila
AU  - Gajić, Radoš
AU  - Bekyarova, Elena
AU  - Cataldi, Amelia
AU  - Parpura, Vladimir
AU  - Milašin, Jelena
PY  - 2018
UR  - https://smile.stomf.bg.ac.rs/handle/123456789/2327
AB  - Stem cell-based therapies are considered a promising treatment modality for many medical conditions. Several types of stem cells with variable differentiation potentials have been isolated from dental tissues, among them stem cells from apical papilla (SCAP). In parallel, new classes of biocompatible nanomaterials have also been developed, including graphene and carbon nanotube-based materials. The aim of the study was to assess whether graphene dispersion (GD) and water-soluble single walled carbon nanotubes (ws-SWCNT), may enhance SCAPs capacity to undergo neural differentiation. SCAPs cultivated in neuroinductive medium supplemented with GD and ws-SWCNT, separately and in combination, were subjected to neural marker analysis by real-time polymerase chain reaction (neurofilament medium [NF-M], neurogenin-2 [ngn-2], III-tubulin, microtubule-associated protein 2) and immunocytochemistry (NeuN and III-tubulin). GD, ws-SWCNT, and their combination, had neuro-stimulatory effects on SCAPs, as judged by the production of neural markers. Compared to cells grown in nanomaterial free medium, cells with GD showed higher production of B3T, cells with ws-SWCNT had higher production of ngn-2 and NF-M, while the combination of nanomaterials gave similar levels of both B3T and NF-M as the neuroinductive medium aloal ne, but with the finest neuron-like morphology. In conclusion, GD and ws-SWCNT seem to enhance neurdifferentiation of SCAP.
PB  - Wiley, Hoboken
T2  - Journal of Biomedical Materials Research Part A
T1  - Differentiation of stem cells from apical papilla into neural lineage using graphene dispersion and single walled carbon nanotubes
VL  - 106
IS  - 10
SP  - 2653
EP  - 2661
DO  - 10.1002/jbm.a.36461
ER  - 
@article{
author = "Simonović, Jelena and Toljić, Boško and Nikolić, Nadja and Perić, Mina and Vujin, Jasna and Panajotović, Radmila and Gajić, Radoš and Bekyarova, Elena and Cataldi, Amelia and Parpura, Vladimir and Milašin, Jelena",
year = "2018",
abstract = "Stem cell-based therapies are considered a promising treatment modality for many medical conditions. Several types of stem cells with variable differentiation potentials have been isolated from dental tissues, among them stem cells from apical papilla (SCAP). In parallel, new classes of biocompatible nanomaterials have also been developed, including graphene and carbon nanotube-based materials. The aim of the study was to assess whether graphene dispersion (GD) and water-soluble single walled carbon nanotubes (ws-SWCNT), may enhance SCAPs capacity to undergo neural differentiation. SCAPs cultivated in neuroinductive medium supplemented with GD and ws-SWCNT, separately and in combination, were subjected to neural marker analysis by real-time polymerase chain reaction (neurofilament medium [NF-M], neurogenin-2 [ngn-2], III-tubulin, microtubule-associated protein 2) and immunocytochemistry (NeuN and III-tubulin). GD, ws-SWCNT, and their combination, had neuro-stimulatory effects on SCAPs, as judged by the production of neural markers. Compared to cells grown in nanomaterial free medium, cells with GD showed higher production of B3T, cells with ws-SWCNT had higher production of ngn-2 and NF-M, while the combination of nanomaterials gave similar levels of both B3T and NF-M as the neuroinductive medium aloal ne, but with the finest neuron-like morphology. In conclusion, GD and ws-SWCNT seem to enhance neurdifferentiation of SCAP.",
publisher = "Wiley, Hoboken",
journal = "Journal of Biomedical Materials Research Part A",
title = "Differentiation of stem cells from apical papilla into neural lineage using graphene dispersion and single walled carbon nanotubes",
volume = "106",
number = "10",
pages = "2653-2661",
doi = "10.1002/jbm.a.36461"
}
Simonović, J., Toljić, B., Nikolić, N., Perić, M., Vujin, J., Panajotović, R., Gajić, R., Bekyarova, E., Cataldi, A., Parpura, V.,& Milašin, J.. (2018). Differentiation of stem cells from apical papilla into neural lineage using graphene dispersion and single walled carbon nanotubes. in Journal of Biomedical Materials Research Part A
Wiley, Hoboken., 106(10), 2653-2661.
https://doi.org/10.1002/jbm.a.36461
Simonović J, Toljić B, Nikolić N, Perić M, Vujin J, Panajotović R, Gajić R, Bekyarova E, Cataldi A, Parpura V, Milašin J. Differentiation of stem cells from apical papilla into neural lineage using graphene dispersion and single walled carbon nanotubes. in Journal of Biomedical Materials Research Part A. 2018;106(10):2653-2661.
doi:10.1002/jbm.a.36461 .
Simonović, Jelena, Toljić, Boško, Nikolić, Nadja, Perić, Mina, Vujin, Jasna, Panajotović, Radmila, Gajić, Radoš, Bekyarova, Elena, Cataldi, Amelia, Parpura, Vladimir, Milašin, Jelena, "Differentiation of stem cells from apical papilla into neural lineage using graphene dispersion and single walled carbon nanotubes" in Journal of Biomedical Materials Research Part A, 106, no. 10 (2018):2653-2661,
https://doi.org/10.1002/jbm.a.36461 . .

DSpace software copyright © 2002-2015  DuraSpace
About Smile – School of dental Medicine dIgitaL archivE | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About Smile – School of dental Medicine dIgitaL archivE | Send Feedback

OpenAIRERCUB