Differentiation of stem cells from apical papilla into neural lineage using graphene dispersion and single walled carbon nanotubes
No Thumbnail
Authors
Simonović, JelenaToljić, Boško

Nikolić, Nadja

Perić, Mina
Vujin, Jasna
Panajotović, Radmila
Gajić, Radoš
Bekyarova, Elena
Cataldi, Amelia
Parpura, Vladimir
Milašin, Jelena

Article (Published version)

Metadata
Show full item recordAbstract
Stem cell-based therapies are considered a promising treatment modality for many medical conditions. Several types of stem cells with variable differentiation potentials have been isolated from dental tissues, among them stem cells from apical papilla (SCAP). In parallel, new classes of biocompatible nanomaterials have also been developed, including graphene and carbon nanotube-based materials. The aim of the study was to assess whether graphene dispersion (GD) and water-soluble single walled carbon nanotubes (ws-SWCNT), may enhance SCAPs capacity to undergo neural differentiation. SCAPs cultivated in neuroinductive medium supplemented with GD and ws-SWCNT, separately and in combination, were subjected to neural marker analysis by real-time polymerase chain reaction (neurofilament medium [NF-M], neurogenin-2 [ngn-2], III-tubulin, microtubule-associated protein 2) and immunocytochemistry (NeuN and III-tubulin). GD, ws-SWCNT, and their combination, had neuro-stimulatory effects on SCAPs,... as judged by the production of neural markers. Compared to cells grown in nanomaterial free medium, cells with GD showed higher production of B3T, cells with ws-SWCNT had higher production of ngn-2 and NF-M, while the combination of nanomaterials gave similar levels of both B3T and NF-M as the neuroinductive medium aloal ne, but with the finest neuron-like morphology. In conclusion, GD and ws-SWCNT seem to enhance neurdifferentiation of SCAP.
Keywords:
stem cells / apical papilla / neural induction / graphene dispersion / carbon nanotubesSource:
Journal of Biomedical Materials Research Part A, 2018, 106, 10, 2653-2661Publisher:
- Wiley, Hoboken
Funding / projects:
DOI: 10.1002/jbm.a.36461
ISSN: 1549-3296
PubMed: 29896770
WoS: 000448177600009
Scopus: 2-s2.0-85052912041
Collections
Institution/Community
Stomatološki fakultetTY - JOUR AU - Simonović, Jelena AU - Toljić, Boško AU - Nikolić, Nadja AU - Perić, Mina AU - Vujin, Jasna AU - Panajotović, Radmila AU - Gajić, Radoš AU - Bekyarova, Elena AU - Cataldi, Amelia AU - Parpura, Vladimir AU - Milašin, Jelena PY - 2018 UR - https://smile.stomf.bg.ac.rs/handle/123456789/2327 AB - Stem cell-based therapies are considered a promising treatment modality for many medical conditions. Several types of stem cells with variable differentiation potentials have been isolated from dental tissues, among them stem cells from apical papilla (SCAP). In parallel, new classes of biocompatible nanomaterials have also been developed, including graphene and carbon nanotube-based materials. The aim of the study was to assess whether graphene dispersion (GD) and water-soluble single walled carbon nanotubes (ws-SWCNT), may enhance SCAPs capacity to undergo neural differentiation. SCAPs cultivated in neuroinductive medium supplemented with GD and ws-SWCNT, separately and in combination, were subjected to neural marker analysis by real-time polymerase chain reaction (neurofilament medium [NF-M], neurogenin-2 [ngn-2], III-tubulin, microtubule-associated protein 2) and immunocytochemistry (NeuN and III-tubulin). GD, ws-SWCNT, and their combination, had neuro-stimulatory effects on SCAPs, as judged by the production of neural markers. Compared to cells grown in nanomaterial free medium, cells with GD showed higher production of B3T, cells with ws-SWCNT had higher production of ngn-2 and NF-M, while the combination of nanomaterials gave similar levels of both B3T and NF-M as the neuroinductive medium aloal ne, but with the finest neuron-like morphology. In conclusion, GD and ws-SWCNT seem to enhance neurdifferentiation of SCAP. PB - Wiley, Hoboken T2 - Journal of Biomedical Materials Research Part A T1 - Differentiation of stem cells from apical papilla into neural lineage using graphene dispersion and single walled carbon nanotubes VL - 106 IS - 10 SP - 2653 EP - 2661 DO - 10.1002/jbm.a.36461 ER -
@article{ author = "Simonović, Jelena and Toljić, Boško and Nikolić, Nadja and Perić, Mina and Vujin, Jasna and Panajotović, Radmila and Gajić, Radoš and Bekyarova, Elena and Cataldi, Amelia and Parpura, Vladimir and Milašin, Jelena", year = "2018", abstract = "Stem cell-based therapies are considered a promising treatment modality for many medical conditions. Several types of stem cells with variable differentiation potentials have been isolated from dental tissues, among them stem cells from apical papilla (SCAP). In parallel, new classes of biocompatible nanomaterials have also been developed, including graphene and carbon nanotube-based materials. The aim of the study was to assess whether graphene dispersion (GD) and water-soluble single walled carbon nanotubes (ws-SWCNT), may enhance SCAPs capacity to undergo neural differentiation. SCAPs cultivated in neuroinductive medium supplemented with GD and ws-SWCNT, separately and in combination, were subjected to neural marker analysis by real-time polymerase chain reaction (neurofilament medium [NF-M], neurogenin-2 [ngn-2], III-tubulin, microtubule-associated protein 2) and immunocytochemistry (NeuN and III-tubulin). GD, ws-SWCNT, and their combination, had neuro-stimulatory effects on SCAPs, as judged by the production of neural markers. Compared to cells grown in nanomaterial free medium, cells with GD showed higher production of B3T, cells with ws-SWCNT had higher production of ngn-2 and NF-M, while the combination of nanomaterials gave similar levels of both B3T and NF-M as the neuroinductive medium aloal ne, but with the finest neuron-like morphology. In conclusion, GD and ws-SWCNT seem to enhance neurdifferentiation of SCAP.", publisher = "Wiley, Hoboken", journal = "Journal of Biomedical Materials Research Part A", title = "Differentiation of stem cells from apical papilla into neural lineage using graphene dispersion and single walled carbon nanotubes", volume = "106", number = "10", pages = "2653-2661", doi = "10.1002/jbm.a.36461" }
Simonović, J., Toljić, B., Nikolić, N., Perić, M., Vujin, J., Panajotović, R., Gajić, R., Bekyarova, E., Cataldi, A., Parpura, V.,& Milašin, J.. (2018). Differentiation of stem cells from apical papilla into neural lineage using graphene dispersion and single walled carbon nanotubes. in Journal of Biomedical Materials Research Part A Wiley, Hoboken., 106(10), 2653-2661. https://doi.org/10.1002/jbm.a.36461
Simonović J, Toljić B, Nikolić N, Perić M, Vujin J, Panajotović R, Gajić R, Bekyarova E, Cataldi A, Parpura V, Milašin J. Differentiation of stem cells from apical papilla into neural lineage using graphene dispersion and single walled carbon nanotubes. in Journal of Biomedical Materials Research Part A. 2018;106(10):2653-2661. doi:10.1002/jbm.a.36461 .
Simonović, Jelena, Toljić, Boško, Nikolić, Nadja, Perić, Mina, Vujin, Jasna, Panajotović, Radmila, Gajić, Radoš, Bekyarova, Elena, Cataldi, Amelia, Parpura, Vladimir, Milašin, Jelena, "Differentiation of stem cells from apical papilla into neural lineage using graphene dispersion and single walled carbon nanotubes" in Journal of Biomedical Materials Research Part A, 106, no. 10 (2018):2653-2661, https://doi.org/10.1002/jbm.a.36461 . .