Analysis of the strain and hardness in self-cured and light-cured self-adhesive resin based cement
Authorized Users Only
2019
Authors
Mitrović, Aleksandra
Tanasić, Ivan

Mitrović, Nenad

Miletić, Vesna

Bakić, Gordana
Milošević, Miloš
Antonović, Dušan
Article (Published version)

Metadata
Show full item recordAbstract
The study showed an application of the 3 D Digital Image Correlation Method (3 D-DIC) for detection of von Mises strain in samples of the self-etch, self-adhesive resin based cement (RBC). The aim was to determine and compare strain in the self-cured and light-cured Maxcem Elite, furthermore to investigate the hardness of these two cement-types. The experiment was carried out using two groups of Maxcem Elite (Kerr, Orange, CA, USA) samples; each tested group includes five (o5 x 2 mm sized) samples, for both self-curing and light-curing mode. All samples were prepared by filling teflon ring-type molds. In addition, Vickers micro-hardness was measured for all samples. Maxcem Elite showed similar maximum strain values from 10% to 12% for both groups. Besides the maximum strain value, the 3 D-DIC method also enabled monitoring the change of strain field even after the recommended polymerization time. This method has shown that the polymerization shrinkage continues even after 10 min which ...disagreed with manufacturer's suggestion. Group II showed maximum strain values of 12% in the peripheral zone after 10 min, in the last Stage (Stage 60). Statistically significant difference was not found in the overall strain between self- and light-cured Maxcem Elite neither peripherally (p = 0.118) nor centrally (p = 0.879). However, statistical significance was found in strain regarding central and peripheral zone in both, self-cured (p = 0.020) and light-cured (p = 0.002) Maxcem Elite. The mean von Mises strain values in the periphery of the samples (Section 0) were significantly higher compared to strain values in the center of the samples (for Section 1 and 2). The last stage (Stage 60) of the light-cured Maxcem Elite polymerization showed significantly higher values of von Mises strain compared to initial stage (Stage 0). Higher values of micro-hardness were noticed on the surfaces directly exposed to LED lamp after performing measurements of micro-hardness on light-cured samples.
Keywords:
Self-etch / self-adhesive resin dental cement / dual-cure cement / shrinkage strain / hardness / Digital Image Correlation methodSource:
Journal of Adhesion Science & Technology, 2019, 33, 24, 2684-2695Publisher:
- Taylor & Francis Ltd, Abingdon
Funding / projects:
- Development and application of methods and laboratory equipment intended for conformity assessment of technical products (RS-35031)
- Developed new methods for diagnosis and examination mechanical structures (RS-35040)
DOI: 10.1080/01694243.2019.1654221
ISSN: 0169-4243
WoS: 000481870400001
Scopus: 2-s2.0-85071033916
Collections
Institution/Community
Stomatološki fakultetTY - JOUR AU - Mitrović, Aleksandra AU - Tanasić, Ivan AU - Mitrović, Nenad AU - Miletić, Vesna AU - Bakić, Gordana AU - Milošević, Miloš AU - Antonović, Dušan PY - 2019 UR - https://smile.stomf.bg.ac.rs/handle/123456789/2396 AB - The study showed an application of the 3 D Digital Image Correlation Method (3 D-DIC) for detection of von Mises strain in samples of the self-etch, self-adhesive resin based cement (RBC). The aim was to determine and compare strain in the self-cured and light-cured Maxcem Elite, furthermore to investigate the hardness of these two cement-types. The experiment was carried out using two groups of Maxcem Elite (Kerr, Orange, CA, USA) samples; each tested group includes five (o5 x 2 mm sized) samples, for both self-curing and light-curing mode. All samples were prepared by filling teflon ring-type molds. In addition, Vickers micro-hardness was measured for all samples. Maxcem Elite showed similar maximum strain values from 10% to 12% for both groups. Besides the maximum strain value, the 3 D-DIC method also enabled monitoring the change of strain field even after the recommended polymerization time. This method has shown that the polymerization shrinkage continues even after 10 min which disagreed with manufacturer's suggestion. Group II showed maximum strain values of 12% in the peripheral zone after 10 min, in the last Stage (Stage 60). Statistically significant difference was not found in the overall strain between self- and light-cured Maxcem Elite neither peripherally (p = 0.118) nor centrally (p = 0.879). However, statistical significance was found in strain regarding central and peripheral zone in both, self-cured (p = 0.020) and light-cured (p = 0.002) Maxcem Elite. The mean von Mises strain values in the periphery of the samples (Section 0) were significantly higher compared to strain values in the center of the samples (for Section 1 and 2). The last stage (Stage 60) of the light-cured Maxcem Elite polymerization showed significantly higher values of von Mises strain compared to initial stage (Stage 0). Higher values of micro-hardness were noticed on the surfaces directly exposed to LED lamp after performing measurements of micro-hardness on light-cured samples. PB - Taylor & Francis Ltd, Abingdon T2 - Journal of Adhesion Science & Technology T1 - Analysis of the strain and hardness in self-cured and light-cured self-adhesive resin based cement VL - 33 IS - 24 SP - 2684 EP - 2695 DO - 10.1080/01694243.2019.1654221 ER -
@article{ author = "Mitrović, Aleksandra and Tanasić, Ivan and Mitrović, Nenad and Miletić, Vesna and Bakić, Gordana and Milošević, Miloš and Antonović, Dušan", year = "2019", abstract = "The study showed an application of the 3 D Digital Image Correlation Method (3 D-DIC) for detection of von Mises strain in samples of the self-etch, self-adhesive resin based cement (RBC). The aim was to determine and compare strain in the self-cured and light-cured Maxcem Elite, furthermore to investigate the hardness of these two cement-types. The experiment was carried out using two groups of Maxcem Elite (Kerr, Orange, CA, USA) samples; each tested group includes five (o5 x 2 mm sized) samples, for both self-curing and light-curing mode. All samples were prepared by filling teflon ring-type molds. In addition, Vickers micro-hardness was measured for all samples. Maxcem Elite showed similar maximum strain values from 10% to 12% for both groups. Besides the maximum strain value, the 3 D-DIC method also enabled monitoring the change of strain field even after the recommended polymerization time. This method has shown that the polymerization shrinkage continues even after 10 min which disagreed with manufacturer's suggestion. Group II showed maximum strain values of 12% in the peripheral zone after 10 min, in the last Stage (Stage 60). Statistically significant difference was not found in the overall strain between self- and light-cured Maxcem Elite neither peripherally (p = 0.118) nor centrally (p = 0.879). However, statistical significance was found in strain regarding central and peripheral zone in both, self-cured (p = 0.020) and light-cured (p = 0.002) Maxcem Elite. The mean von Mises strain values in the periphery of the samples (Section 0) were significantly higher compared to strain values in the center of the samples (for Section 1 and 2). The last stage (Stage 60) of the light-cured Maxcem Elite polymerization showed significantly higher values of von Mises strain compared to initial stage (Stage 0). Higher values of micro-hardness were noticed on the surfaces directly exposed to LED lamp after performing measurements of micro-hardness on light-cured samples.", publisher = "Taylor & Francis Ltd, Abingdon", journal = "Journal of Adhesion Science & Technology", title = "Analysis of the strain and hardness in self-cured and light-cured self-adhesive resin based cement", volume = "33", number = "24", pages = "2684-2695", doi = "10.1080/01694243.2019.1654221" }
Mitrović, A., Tanasić, I., Mitrović, N., Miletić, V., Bakić, G., Milošević, M.,& Antonović, D.. (2019). Analysis of the strain and hardness in self-cured and light-cured self-adhesive resin based cement. in Journal of Adhesion Science & Technology Taylor & Francis Ltd, Abingdon., 33(24), 2684-2695. https://doi.org/10.1080/01694243.2019.1654221
Mitrović A, Tanasić I, Mitrović N, Miletić V, Bakić G, Milošević M, Antonović D. Analysis of the strain and hardness in self-cured and light-cured self-adhesive resin based cement. in Journal of Adhesion Science & Technology. 2019;33(24):2684-2695. doi:10.1080/01694243.2019.1654221 .
Mitrović, Aleksandra, Tanasić, Ivan, Mitrović, Nenad, Miletić, Vesna, Bakić, Gordana, Milošević, Miloš, Antonović, Dušan, "Analysis of the strain and hardness in self-cured and light-cured self-adhesive resin based cement" in Journal of Adhesion Science & Technology, 33, no. 24 (2019):2684-2695, https://doi.org/10.1080/01694243.2019.1654221 . .