3D Digital Image Correlation Analysis of the Shrinkage Strain in Four Dual Cure Composite Cements

2019
Authors
Mitrović, Aleksandra
Antonović, Dušan
Tanasić, Ivan

Mitrović, Nenad

Bakić, Gordana
Popović, Dejana
Milošević, Miloš
Article (Published version)
Metadata
Show full item recordAbstract
The introduction of resin-based cements and an adhesive-bonding system in daily dental practice has given the opportunity to increase the retention of previously conventional cemented restorations and the optimal results in esthetic. This experimental study employed the 3D Digital Image Correlation Method (3D-DIC) for detecting shrinkage strain in four dual cured composite cements. The aim was to visualize measure, analyze, and compare strain fields in four resin-based cements using the 3D-DIC method. A total of 72 samples were divided into 4 groups considering variations in sample types, diameter, and thickness. Four types of composite cements: RelyX U200 (3 M ESPE, St. Paul, MN, USA), MaxCem Elite (Kerr, Orange, CA, USA), Multilink Automix (Ivoclar Vivadent, Schaan, Liechtenstein), and SeT PP (SDI, Australia) were used. Each type had diameters of 3 mm, 4 mm, and 5 mm, respectively, combined with two different values of thickness: 1 mm and 2 mm. Thickness had an important role on stra...in detected in all tested materials showing higher strain in samples with 2 mm thickness compared to 1 mm samples. Shrinkage strain values were the highest in Set PP samples indicated the possibility of undesirable de-bonding.
Source:
Biomed Research International, 2019, 2019Publisher:
- Hindawi Ltd, London
Funding / projects:
- Development and application of methods and laboratory equipment intended for conformity assessment of technical products (RS-35031)
- Developed new methods for diagnosis and examination mechanical structures (RS-35040)
DOI: 10.1155/2019/2041348
ISSN: 2314-6133
PubMed: 31828093
WoS: 000500804700001
Scopus: 2-s2.0-85076020972
Collections
Institution/Community
Stomatološki fakultetTY - JOUR AU - Mitrović, Aleksandra AU - Antonović, Dušan AU - Tanasić, Ivan AU - Mitrović, Nenad AU - Bakić, Gordana AU - Popović, Dejana AU - Milošević, Miloš PY - 2019 UR - https://smile.stomf.bg.ac.rs/handle/123456789/2420 AB - The introduction of resin-based cements and an adhesive-bonding system in daily dental practice has given the opportunity to increase the retention of previously conventional cemented restorations and the optimal results in esthetic. This experimental study employed the 3D Digital Image Correlation Method (3D-DIC) for detecting shrinkage strain in four dual cured composite cements. The aim was to visualize measure, analyze, and compare strain fields in four resin-based cements using the 3D-DIC method. A total of 72 samples were divided into 4 groups considering variations in sample types, diameter, and thickness. Four types of composite cements: RelyX U200 (3 M ESPE, St. Paul, MN, USA), MaxCem Elite (Kerr, Orange, CA, USA), Multilink Automix (Ivoclar Vivadent, Schaan, Liechtenstein), and SeT PP (SDI, Australia) were used. Each type had diameters of 3 mm, 4 mm, and 5 mm, respectively, combined with two different values of thickness: 1 mm and 2 mm. Thickness had an important role on strain detected in all tested materials showing higher strain in samples with 2 mm thickness compared to 1 mm samples. Shrinkage strain values were the highest in Set PP samples indicated the possibility of undesirable de-bonding. PB - Hindawi Ltd, London T2 - Biomed Research International T1 - 3D Digital Image Correlation Analysis of the Shrinkage Strain in Four Dual Cure Composite Cements VL - 2019 DO - 10.1155/2019/2041348 ER -
@article{ author = "Mitrović, Aleksandra and Antonović, Dušan and Tanasić, Ivan and Mitrović, Nenad and Bakić, Gordana and Popović, Dejana and Milošević, Miloš", year = "2019", abstract = "The introduction of resin-based cements and an adhesive-bonding system in daily dental practice has given the opportunity to increase the retention of previously conventional cemented restorations and the optimal results in esthetic. This experimental study employed the 3D Digital Image Correlation Method (3D-DIC) for detecting shrinkage strain in four dual cured composite cements. The aim was to visualize measure, analyze, and compare strain fields in four resin-based cements using the 3D-DIC method. A total of 72 samples were divided into 4 groups considering variations in sample types, diameter, and thickness. Four types of composite cements: RelyX U200 (3 M ESPE, St. Paul, MN, USA), MaxCem Elite (Kerr, Orange, CA, USA), Multilink Automix (Ivoclar Vivadent, Schaan, Liechtenstein), and SeT PP (SDI, Australia) were used. Each type had diameters of 3 mm, 4 mm, and 5 mm, respectively, combined with two different values of thickness: 1 mm and 2 mm. Thickness had an important role on strain detected in all tested materials showing higher strain in samples with 2 mm thickness compared to 1 mm samples. Shrinkage strain values were the highest in Set PP samples indicated the possibility of undesirable de-bonding.", publisher = "Hindawi Ltd, London", journal = "Biomed Research International", title = "3D Digital Image Correlation Analysis of the Shrinkage Strain in Four Dual Cure Composite Cements", volume = "2019", doi = "10.1155/2019/2041348" }
Mitrović, A., Antonović, D., Tanasić, I., Mitrović, N., Bakić, G., Popović, D.,& Milošević, M.. (2019). 3D Digital Image Correlation Analysis of the Shrinkage Strain in Four Dual Cure Composite Cements. in Biomed Research International Hindawi Ltd, London., 2019. https://doi.org/10.1155/2019/2041348
Mitrović A, Antonović D, Tanasić I, Mitrović N, Bakić G, Popović D, Milošević M. 3D Digital Image Correlation Analysis of the Shrinkage Strain in Four Dual Cure Composite Cements. in Biomed Research International. 2019;2019. doi:10.1155/2019/2041348 .
Mitrović, Aleksandra, Antonović, Dušan, Tanasić, Ivan, Mitrović, Nenad, Bakić, Gordana, Popović, Dejana, Milošević, Miloš, "3D Digital Image Correlation Analysis of the Shrinkage Strain in Four Dual Cure Composite Cements" in Biomed Research International, 2019 (2019), https://doi.org/10.1155/2019/2041348 . .